Citation: Ya-Li Shi, Yuan-Yuan Pan, Li-Na Liang, Ya-Qi Cai. An on-line solid phase extraction-liquid chromatography tandem mass spectrometry method for the determination of perfluoroalkyl substances in the Antarctic ice core samples[J]. Chinese Chemical Letters, ;2015, 26(9): 1073-1078. doi: 10.1016/j.cclet.2015.05.038 shu

An on-line solid phase extraction-liquid chromatography tandem mass spectrometry method for the determination of perfluoroalkyl substances in the Antarctic ice core samples

  • Corresponding author: Ya-Qi Cai, 
  • Received Date: 20 January 2015
    Available Online: 19 May 2015

    Fund Project: This work was jointly supported by the National Natural Science Foundation of China (Nos. 21377145, 21321004) (Nos. 21377145, 21321004)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB01020300). (No. XDB01020300)

  • An on-line solid phase extraction-high performance liquid chromatography-tandemmass spectrometry method for the analysis of perfluoroalkyl substances (PFASs) in water samples was developed. The optimal analytical conditions were obtained through the optimization of the extraction efficiency of online solid phase extraction column, sample loading rate and loading volume, and the concentration of ammonium acetate in mobile phase. Under the optimal condition, the analytical method displayed good linearity (r2 > 0.99) for 12 PFASs (C5-C14 perfluoroalkyl carboxylic acids and C6/C8 perfluoroalkyl sulfonic acids) over a concentration range of 0.5-100 ng/L. The limits of quantitation for samples were between 0.025 ng/L and 0.5 ng/L and the relative standard deviations (RSD) of five consecutive analyses were less than 10% for 1 ng/L standard solution. Satisfactory results were obtained using this analytical method for the analysis of perfluoroalkyl substances in Antarctic ice core samples. The recoveries of all perfluoroalkyl substances were in a range of 73%-117% when the sampleswere spiked with standards at the concentrations of 2.5 ng/L and 25 ng/L.
  • 加载中
    1. [1]

      [1] S. Posner, Perfluorinated compounds:occurrence and uses in products, in:T.P. Knepper, F.T. Lange (Eds.), Polyfluorinated Chemicals and Transformation Products, Springer, Berlin Heidelberg, 2012, pp. 25-39.

    2. [2]

      [2] R.C. Buck, J. Franklin, U. Berger, et al., Perfluoroalkyl and polyfluoroalkyl substances in the environment:terminology, classification and origins, Integr. Environ. Assess. Manag. 7(2011) 513-541.

    3. [3]

      [3] J.S. Wang, Y.T. Zhang, W. Zhang, et al., Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents, Environ. Sci. Technol. 46(2012) 9274-9281.

    4. [4]

      [4] M.J. Lopez-Espinosa, T. Fletcher, B. Armstrong, et al., Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant, Environ. Sci. Technol. 45(2011) 8160-8166.

    5. [5]

      [5] B.B. Gump, Q. Wu, A.K. Dumas, K. Kannan, Perfluorochemical (PFC) exposure in children:associations with impaired response inhibition, Environ. Sci. Technol. 45(2011) 8151-8159.

    6. [6]

      [6] U. S. Environmental Protection Agency (US EPA), New Chemical Review of Alternatives for PFOA and Related Chemicals, 2012 http://www.epa.gov/oppt/pfoa/pubs/altnewchems.html.

    7. [7]

      [7] ENV/JM/RD (2002) 17/FINAL, Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts. http://www.oecd.org/chemicalsafety/risk-assessment/2382880.pdf.

    8. [8]

      [8] United Nations Environment Programme, Governments Unite to Step-up Reduction on Global DDT Reliance and Add Nine New Chemicals Under International Treaty, UNEP, 2009 http://chm.pops.int/Convention/Press release COP4 Geneva 8 May 2009/tabid/542/language/en-US/Default.aspx.

    9. [9]

      [9] Y.N. Liu, A.S. Pereira, S. Beesoon, et al., Temporal trends of perfluorooctanesulfonate isomer and enantiomer patterns in archived Swedish and American serum samples, Environ. Int. 75(2015) 215-222.

    10. [10]

      [10] Z. Zhou, Y.L. Shi, R. Vestergren, et al., Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun Lake, China, Environ. Sci. Technol. 48(2014) 3864-3874.

    11. [11]

      [11] J.W. Teng, S.Z. Tang, S.Y. Qu, Determination of perfluorooctanesulfonate and perfluorooctanoate in water samples by SPE-HPLC/electrospray ion trap mass spectrometry, Microchem. J. 93(2009) 55-59.

    12. [12]

      [12] J.M. Keller, A.M. Calafat, K. Kato, et al., Determination of perfluorinated alkyl acid concentrations in human serum and milk standard reference materials, Anal. Bioanal. Chem. 397(2010) 439-451.

    13. [13]

      [13] A. Navarrete, M.P. Martínez-Alcázar, I. Durá n, et al., Simultaneous online SPE-HPLC-MS/MS analysis of docetaxel, temsirolimus and sirolimus in whole blood and human plasma, J. Chromatogr. B:Analyt. Technol. Biomed. Life Sci. 921/922(2013) 35-42.

    14. [14]

      [14] F. Guo, Q. Liu, G.B. Qu, et al., Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1281(2013) 9-18.

    15. [15]

      [15] F. Gosetti, U. Chiuminatto, D. Zampieri, et al., Determination of perfluorochemicals in biological, environmental and food samples by an automated online solid phase extraction ultra high performance liquid chromatography tandem mass spectrometry method, J. Chromatogr. A 1217(2010) 7864-7872.

    16. [16]

      [16] P. Zhang, Y.L. Shi, Y.Q. Cai, S.F. Mou, Determination of perfluorinated compounds in water samples by high performance liquid chromatography-electrospray tandem mass spectrometry, Chin. J. Anal. Chem. 35(2007) 969-972.

    17. [17]

      [17] S. Jiang, Y.S. Li, B. Sun, Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method, Chin. Chem. Lett. 24(2013) 311-314.

  • 加载中
    1. [1]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    4. [4]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    5. [5]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    6. [6]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    7. [7]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    8. [8]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    9. [9]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    12. [12]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    13. [13]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    14. [14]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    15. [15]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    16. [16]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    17. [17]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    18. [18]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    19. [19]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    20. [20]

      Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764

Metrics
  • PDF Downloads(0)
  • Abstract views(796)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return