Citation: Ai-E Wang, Zong Chang, Yong-Peng Liu, Pei-Qiang Huang. Mild N-deacylation of secondary amides by alkylation with organocerium reagents[J]. Chinese Chemical Letters, ;2015, 26(9): 1055-1058. doi: 10.1016/j.cclet.2015.05.033 shu

Mild N-deacylation of secondary amides by alkylation with organocerium reagents

  • Corresponding author: Ai-E Wang,  Pei-Qiang Huang, 
  • Received Date: 3 April 2015
    Available Online: 11 May 2015

    Fund Project: The authors are grateful for financial support from the National Natural Science Foundation of China (No. 21332007) (No. 21332007) and the Natural Science Foundation of Fujian Province of China (No. 2014J01062). (PCSIRT)

  • Secondary amides are a class of highly stable compounds serving as versatile starting materials, intermediates and directing groups (amido groups) in organic synthesis. The direct deacylation of secondary amides to release amines is an important transformation in organic synthesis. Here, we report a protocol for the deacylation of secondary amides and isolation of amines. The method is based on the activation of amides with Tf2O, followed by addition of organocerium reagents, and acidic work-up. The reaction proceeded under mild conditions and afforded the corresponding amines, isolated as their hydrochloride salts, in good yields. In combination with the C-H activation functionalization methodology, the method is applicable to the functionalization of aniline as well as conversion of carboxylic derivatives to functionalized ketones.
  • 加载中
    1. [1]

      [1] Chiral Amine Synthesis, in:T.C. Nugent (Ed.), Methods, Developments and Applications, Wiley-VCH, Weinheim, 2010.

    2. [2]

      [2] (a) K. Gopalaiah, H.B. Kagan, Use of nonfunctionalized enamides and enecarbamatesin asymmetric synthesis, Chem. Rev. 111(2011) 4599-4657;

    3. [3]

      (b) J.H. Xie, S.F. Zhu, Q.L. Zhou, Transition metal-catalyzed enantioselective hydrogenation of enamines and imines, Chem. Rev. 111(2011) 1713-1760;

    4. [4]

      (c) T.C. Nugent, M. El-Shazly, Chiral amine synthesis-recent developments and trends for enamide reduction, reductive amination, and imine reduction, Adv. Synth. Catal. 352(2010) 753-819.

    5. [5]

      [3] (a) E. Busto, V. Gotor-Ferná ndez, V. Gotor, Hydrolases in the stereoselective synthesis of N-heterocyclic amines and amino acid derivatives, Chem. Rev. 111(2011) 3998-4035;

    6. [6]

      (b) C.E. Müller, P.R. Schreiner, Organocatalytic enantioselective acyl transfer onto racemic as well as meso alcohols, amines, and thiols, Angew. Chem. Int. Ed. 50(2011) 6012-6042;

    7. [7]

      (c) H. Pellissier, Catalytic non-enzymatic kinetic resolution, Adv. Synth. Catal. 353(2011) 1613-1666.

    8. [8]

      [4] (a) P.B. Arockiam, C. Bruneau, P.H. Dixneuf, Ruthenium(II)-catalyzed C-H bond activation and functionalization, Chem. Rev. 112(2012) 5879-5918;

    9. [9]

      (b) T.W. Lyons, M.S. Sanford, Palladium-catalyzed ligand-directed C-H functionalization reactions, Chem. Rev. 110(2010) 1147-1169;

    10. [10]

      (c) L. Ackermann, R. Vicente, A.R. Kapdi, Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage, Angew. Chem. Int. Ed. 48(2009) 9792-9826;

    11. [11]

      (d) X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions:versatility and practicality, Angew. Chem. Int. Ed. 48(2009) 5094-5115;

    12. [12]

      (e) O. Daugulis, H.Q. Do, D. Shabashov, Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds, Acc. Chem. Res. 42(2009) 1074-1086.

    13. [13]

      [5] P.G.M. Wuts, T.W. Greene, Protective Groups in Organic Synthesis, 4th ed., Wiley-Interscience, Hoboken, 2006, pp. 773-789.

    14. [14]

      [6] A. Spaggiari, L.C. Blaszczak, F. Prati, Low-temperature deacylation of N-monosubstituted amides, Org. Lett. 6(2004) 3885-3888.

    15. [15]

      [7] S.G. Koenig, C.P. Vandenbossche, H. Zhao, et al., A facile deprotection of secondary acetamides, Org. Lett. 11(2009) 433-436.

    16. [16]

      [8] Y. Kita, Y. Nishii, A. Onoue, K. Mashima, Combined catalytic system of scandium triflate and boronic ester for amide bond cleavage, Adv. Synth. Catal. 355(2013) 3391-3395.

    17. [17]

      [9] Y. Shimizu, H. Morimoto, M. Zhang, T. Ohshima, Microwave-assisted deacylation of unactivated amides using ammonium-salt-accelerated transamidation, Angew. Chem. Int. Ed. 51(2012) 8564-8567.

    18. [18]

      [10] Y. Shimizu, M. Noshita, Y. Mukai, H. Morimoto, T. Ohshima, Cleavage of unactivated amide bonds by ammonium salt-accelerated hydrazinolysis, Chem. Commun. 50(2014) 12623-12625.

    19. [19]

      [11] P.R. Sultane, T.B. Mete, R.G. Bhat, Chemoselective N-deacetylation under mild conditions, Org. Biomol. Chem. 12(2014) 261-264.

    20. [20]

      [12] (a) A.E. Wang, P.Q. Huang, Efficient asymmetric syntheses of alkaloids and medicinally relevant molecules based on heterocyclic chiral building blocks, Pure Appl. Chem. 86(2014) 1227-1235;

    21. [21]

      (b) H.Q. Deng, X.Y. Qian, Y.X. Li, et al., A versatile two-step method for the reductive alkylation and formal[4+2] annulation of secondary lactams:step economical syntheses of the ant venom alkaloids cis-2-butyl-5-propylpyrrolidine and (+)-monomorine I, Org. Chem. Front. 1(2014) 258-266;

    22. [22]

      (c) S.P. Luo, L.D. Guo, L.H. Gao, S. Li, P.Q. Huang, Toward the total synthesis of haliclonin A:construction of a tricyclic substructure, Chem. Eur. J. 19(2013) 87-91;

    23. [23]

      (d) X.G. Wang, A.E. Wang, P.Q. Huang, A concise formal stereoselective total synthesis of (-)-swainsonine, Chin. Chem. Lett. 25(2014) 193-196;

    24. [24]

      (e) S.P. Luo, Q.L. Peng, C.P. Xu, A.E. Wang, P.Q. Huang, Bioinspired step-economical, redox-economical and protecting-group-free enantioselective total syntheses of (-)-chaetominine and analogues, Chin. J. Chem. 32(2014) 757-770;

    25. [25]

      (f) P.Q. Huang, S.Y. Huang, L.H. Gao, et al., Enantioselective total synthesis of (+)-methoxystemofoline and (+)-isomethoxystemofoline, Chem. Comm. 51(2015) 4576-4578.

    26. [26]

      [13] (a) K.J. Xiao, J.M. Luo, K.Y. Ye, Y. Wang, P.Q. Huang, Direct, one-pot sequential reductive alkylation of lactams/amides with Grignard and organolithium reagents through lactam/amide activation, Angew. Chem. Int. Ed. 49(2010) 3037-3040;

    27. [27]

      (b) K.J. Xiao, A.E. Wang, Y.H. Huang, P.Q. Huang, Versatile and direct transformation of secondary amides into ketones by deaminative alkylation with organocerium reagents, Asian J. Org. Chem. 1(2012) 130-132;

    28. [28]

      (c) K.J. Xiao, Y.H. Huang, P.Q. Huang, General direct transformation of secondary amides to ketones via amide activation, Acta Chim. Sinica 70(2012) 1917-1922;

    29. [29]

      (d) Z.Y. Mao, S.Y. Huang, L.H. Gao, A.E. Wang, P.Q. Huang, A novel and versatile method for the enantioselective syntheses of tropane alkaloids, Sci. China Chem. 57(2014) 252-264;

    30. [30]

      (e) P.Q. Huang, W. Ou, K.J. Xiao, A.E. Wang, Tertiary amide-based Knoevenageltype reactions:a direct, general, and chemoselective approach to enaminones, Chem. Comm. 50(2014) 8761-8763;

    31. [31]

      (f) P.Q. Huang, Q.W. Lang, A.E. Wang, J.F. Zheng, Direct reductive coupling of secondary amides:chemoselective formation of vicinal diamines and vicinal amino alcohols, Chem. Comm. 51(2015) 1096-1099;

    32. [32]

      (g) P.Q. Huang, Y. Wang, K.J. Xiao, Y.H. Huang, A general method for the direct transformation of common tertiary amides into ketones and amines by addition of Grignard reagents, Tetrahedron 71(2015) 4248-4254.

    33. [33]

      [14] W.S. Bechara, G. Pelletier, A.B. Charette, Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides, Nat. Chem. 4(2012) 228-234.

    34. [34]

      [15] For reviews on the chemistry of triflic acid and its derivatives, see:(a) PJ. Stang, M.R. White, Triflic acid and its derivatives, Aldrichimica Acta 16(1983) 15-22;

    35. [35]

      (b) I.L. Baraznenok, V.G. Nenajdenko, E.S. Balenkova, Chemical transformations induced by triflic anhydride, Tetrahedron 56(2000) 3077-3119;

    36. [36]

      (c) M. Movassaghi, M.D. Hill, O.K. Ahmad, Direct synthesis of pyridine derivatives, J. Am. Chem. Soc. 129(2007) 10096-10097;

    37. [37]

      (d) S.L. Cui, J. Wang, Y.G. Wang, Synthesis of indoles via domino reaction of N-aryl amides and ethyl diazoacetate, J. Am. Chem. Soc. 130(2008) 13526-13527;

    38. [38]

      (e) B. Peng, D. Geerdink, C. Faré s, N. Maulide, Chemoselective intermolecular α-arylation of amides, Angew. Chem. Int. Ed. 53(2014) 5462-5466.

    39. [39]

      [16] (a) T. Imamoto, Y. Sugiura, N. Takiyama, Organocerium reagents. Nucleophilic addition to easily enolizable ketones, Tetrahedron Lett. 25(1984) 4233-4236;

    40. [40]

      (b) N. Takeda, T. Imamoto, Use of cerium(III) chloride in the reactions of carbonyl compounds with organolithiums or Grignard reagents for the suppression of abnormal reactions:1-butyl-1,2,3,4-tetrahydro-1-naphthol, Org. Synth. 76(1999) 228-238.

    41. [41]

      [17] (a) S.J. Tremont, H.U. Rahman, Ortho-alkylation of acetanilides using alkyl halides and palladium acetate, J. Am. Chem. Soc. 106(1984) 5759-5760;

    42. [42]

      (b) X.B. Wan, Z.X. Ma, B.J. Li, et al., Highly selective C-H functionalization/halogenation of acetanilide, J. Am. Chem. Soc. 128(2006) 7416-7417;

    43. [43]

      (c) T.S. Jiang, G.W. Wang, Palladium-catalyzed ortho-alkoxylation of anilides via C-H activation, J. Org. Chem. 77(2012) 9504-9509.

    44. [44]

      [18] D. Shabashov, O. Daugulis, Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds, J. Am. Chem. Soc. 132(2010) 3965-3972.

  • 加载中
    1. [1]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    2. [2]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    3. [3]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    6. [6]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    9. [9]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    10. [10]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    11. [11]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    12. [12]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    13. [13]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    14. [14]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    15. [15]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    16. [16]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    17. [17]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    18. [18]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    19. [19]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    20. [20]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

Metrics
  • PDF Downloads(0)
  • Abstract views(797)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return