Citation:
Hong-Wei Shi, Chen Yu, Jie Yan. Potassium bromide or sodium chloride catalyzed acetoxyselenenylation of alkenes with diselenides and mCPBA[J]. Chinese Chemical Letters,
;2015, 26(9): 1117-1120.
doi:
10.1016/j.cclet.2015.05.029
-
KBr or NaCl is found to be a good catalyst in Se-Se bond cleavage of diselenides in the present of the oxidant mCPBA. The electrophilic addition of the in situ generated reactive electrophilic selenium species PhSeX (X=Br, Cl) to alkenes in AcOH provides a convenient access to 2-acetoxy-1-selenides. Compared with other catalysts, KBr or NaCl is less expensive and more environment-friendly.
-
Keywords:
- Acetoxyselenenylation,
- Diselenide,
- Alkene,
- Catalysis
-
-
-
[1]
[1] T. Wirth, Chiral selenium compounds in organic synthesis, Tetrahedron 55(1999) 1-28.
-
[2]
[2] T. Wirth, Organoselenium chemistry in stereoselective reactions, Angew. Chem. Int. Ed. 39(2000) 3740-3749.
-
[3]
[3] D.M. Freudendahl, S.A. Shahzad, T. Wirth, Recent advances in organoselenium chemistry, Eur. J. Org. Chem. (2009) 1649-1664.
-
[4]
[4] A.J. Mukherjee, S.S. Zade, H.B. Singh, et al., Organoselenium chemistry:role of intramolecular interactions, Chem. Rev. 110(2010) 4357-4416.
-
[5]
[5] R. Walter, J. Roy, Selenomethionine, a potential catalytic antioxidant in biological systems, J. Org. Chem. 36(1971) 2561-2563.
-
[6]
[6] G. Zeni, M.P. Stracke, C.W. Nogueira, et al., Hydroselenation of alkynes by lithium butylselenolate:an approach in the synthesis of vinylic selenides, Org. Lett. 6(2004) 1135-1138.
-
[7]
[7] L. Letavayova, V. Vlckova, J. Brozmanova, Selenium:from cancer prevention to DNA damage, Toxicology 227(2006) 1-14.
-
[8]
[8] P. Erkekoglu, W. Rachidi, O.G. Yuzugullu, et al., Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium, Toxicol. Appl. Pharmacol. 248(2010) 52-62.
-
[9]
[9] H.E. Ganther, Selenium metabolism, selenoproteins and mechanisms of cancer prevention:complexities with thioredoxin reductase, Carcinogenesis 20(1999) 1657-1666.
-
[10]
[10] A. Hartwig, H. Blessing, T. Schwerdtle, et al., Modulation of DNA repair processes by arsenic and selenium compounds, Toxicology 193(2003) 161-169.
-
[11]
[11] P. Erkekoglu, B. Giray, W. Rachidi, et al., Effects of di(2-ethylhexyl)phthalate on testicular oxidant/antioxidant status in selenium-deficient and seleniumsupplemented rats, Environ. Toxicol. 29(2014) 98-107.
-
[12]
[12] K. El-Bayoumy, P. Upadhyaya, V. Date, et al., Metabolism of[14C]benzyl selenocyanate in the F344 rat, Chem. Res. Toxicol. 4(1991) 560-565.
-
[13]
[13] M.P. Rayman, Selenium in cancer prevention:a review of the evidence and mechanism of action, Proc. Nutr. Soc. 64(2005) 527-542.
-
[14]
[14] P. Erkekoglu, M.W. Chao, W. Ye, et al., Cytoplasmic and nuclear toxicity of 3,5-dimethylaminophenol and potential protection by selenocompounds, Food Chem. Toxicol. 72(2014) 98-110.
-
[15]
[15] A.A. Vieira, J.B. Azeredo, M. Godoi, et al., Catalytic chalcogenylation under greener conditions:a solvent-free sulfur- and seleno-functionalization of olefins via I2/DMSO oxidant system, J. Org. Chem. 80(2015) 2120-2127.
-
[16]
[16] T.G. Back, in:S. Patai (Ed.), The Chemistry of Organic Selenium and Tellurium Compounds, vol. 2, Wiley, Chichester, 1987, pp. 115-134.
-
[17]
[17] M. Tiecco, L. Testaferri, M. Tingoli, et al., Ring-closure reactions initiated by the peroxydisulfate ion oxidation of diphenyl diselenide, J. Org. Chem. 55(1990) 429-434.
-
[18]
[18] M. Tiecco, L. Testaferri, M. Tingoli, et al., The reaction of diphenyl diselenide with peroxydisulphate ions in methanol a convenient procedure to effect the methoxyselenenylation of alkenes, Tetrahedron Lett. 30(1989) 1417-1420.
-
[19]
[19] C. Paulmier, Selenium Reagents and Intermediates in Organic Synthesis, Pergamon Press, Oxford, 1986(Chapter 2).
-
[20]
[20] K.B. Sharpless, R.F. Lauer, Electrophilic organoselenium reagents. A new route to allylic acetates and ethers, J. Org. Chem. 39(1974) 429-430.
-
[21]
[21] H.J. Reich, Organoselenium chemistry. Benzeneselenenyl trifluoroacetate additions to olefins and acetylenes, J. Org. Chem. 39(1974) 428-429.
-
[22]
[22] T. Hori, K.B. Sharpless, Selenium-catalyzed nonradical chlorination of olefins with N-chlorosuccinimide, J. Org. Chem. 44(1979) 4204-4208.
-
[23]
[23] K.C. Nicolaou, D.A. Claremon, W.E. Barnette, et al., N-Phenylselenophthalimide (N-PSP) and N-phenylselenosuccinimide (N-PSS). Two versatile carriers of the phenylseleno group. Oxyselenation of olefins and a selenium-based macrolide synthesis, J. Am. Chem. Soc. 101(1979) 3704-3706.
-
[24]
[24] M. Tiecco, L. Testaferri, M. Tingoli, et al., Production of reactivity of new organoselenium intermediates. Formation of carbon-67oxygen and carbon-67nitrogen bonds, Gazz. Chim. Ital. 126(1996) 635-643.
-
[25]
[25] M. Yoshshida, N. Satoh, N. Kamigata, Novel method for electrophilic selenenylation using diselenide with nitrobenzenesulfonyl peroxide, Chem. Lett. (1989) 1433-1436.
-
[26]
[26] M. Yoshshida, S. Sasage, K. Kawamura, et al., Oxidative cleavage of diselenide by m-mitrobenzenesulfonyl peroxide. Novel method for the electrophilic benzeneselenenylations of olefins and aromatic rings, Bull. Chem. Soc. Jpn. 64(1991) 416-422.
-
[27]
[27] B.M. Trost, M. Ochiai, P.G. McDougal, Hydroxysulfenylation of olefins. An olefin cleavage with functional group differentiation, J. Am. Chem. Soc. 100(1978) 7103-7106.
-
[28]
[28] C. Bosman, A. D'Annibale, S. Resta, et al., Oxidation of diphenyl diselenide with ceric ammonium nitrate:a Novel route for functionalization of olefins, Tetrahedron Lett. 35(1994) 6525-6528.
-
[29]
[29] N. Miyoshi, Y. Ohno, K. Kondo, et al., Acetoxyselenation:reaction of olefins with diphenyl diselenide and cupric acetate, Chem. Lett. (1979) 1309-1312.
-
[30]
[30] N. Taniguchi, Copper-catalyzed 1,2-hydroxysulfenylation of alkene using disulfide via cleavage of the S-S bond, J. Org. Chem. 71(2006) 7874-7876.
-
[31]
[31] H.W. Shi, C. Yu, M. Zhu, et al., Novel and convenient acetoxyselenenylation of alkenes catalyzed by potassium iodide, J. Organomet. Chem. 776(2015) 117-122.
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[3]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[4]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[5]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[6]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[7]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[8]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[9]
Haijiang Gong , Qingtan Zeng , Shili Gai , Yaqian Du , Jing Zhang , Qingyu Wang , He Ding , Lichun Wu , Anees Ahmad Ansari , Piaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059
-
[10]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[11]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[12]
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
-
[13]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[14]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[15]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[16]
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
-
[17]
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
-
[18]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[19]
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
-
[20]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(831)
- HTML views(18)