Citation: Lei Zhang, Yi-Zhong Yuan, Xiao-Hui Tian, Jin-Yu Sun. A thermally reversible supramolecular system based on biphenyl polydiacetylene[J]. Chinese Chemical Letters, ;2015, 26(9): 1133-1136. doi: 10.1016/j.cclet.2015.05.027 shu

A thermally reversible supramolecular system based on biphenyl polydiacetylene

  • Corresponding author: Yi-Zhong Yuan,  Xiao-Hui Tian, 
  • Received Date: 18 March 2015
    Available Online: 11 May 2015

    Fund Project: the Fundamental Research Funds for the Central Universities (No. 22A201514002). (863 program)

  • A new type of diacetylene monomer which includes a biphenylcarboxylic acid group as its head group is synthesized. Polymerization was performed after monomer form spherical vesicle by self-assembly in the water. The polydiacetylene displayed completely thermochromic color change in the range of 20-95℃ owing to the presence of strong π-π interaction caused by biphenyl group and hydrogen bonding between head group.
  • 加载中
    1. [1]

      [1] X.R. Duan, L.B. Liu, F.D. Feng, S. Wang, Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms, Acc. Chem. Res. 43(2010) 260-270.

    2. [2]

      [2] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107(2007) 1324-1388.

    3. [3]

      [3] F. Hide, M.A. Díaz-García, B.J. Schwartz, A.J. Heeger, New developments in the photonic applications of conjugated polymers, Acc. Chem. Res. 30(1997) 430-436.

    4. [4]

      [4] X.L. Feng, L.B. Liu, S. Wang, D.B. Zhu, Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors, Chem. Soc. Rev. 39(2010) 2411-2419.

    5. [5]

      [5] H.N. Kim, Z.Q. Guo, W.H. Zhu, J. Yoon, H. Tian, Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev. 40(2011) 79-93.

    6. [6]

      [6] X.Q. Chen, G.D. Zhou, X.J. Peng, J. Yoon, Biosensors and chemosensors based on the optical responses of polydiacetylenes, Chem. Soc. Rev. 41(2012) 4610-4630.

    7. [7]

      [7] S.W. Thomas III, G.D. Joly, T.M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev. 107(2007) 1339-1386.

    8. [8]

      [8] X.M. Sun, T. Chen, S.Q. Huang, L. Li, H.S. Peng, Chromatic polydiacetylene with novel sensitivity, Chem. Soc. Rev. 39(2010) 4244-4257.

    9. [9]

      [9] D.H. Charych, J.O. Nagy, W. Spevak, M.D. Bendnarski, Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly, Science 261(1993) 585-588.

    10. [10]

      [10] A. Herland, O. Inganäs, Conjugated polymers as optical probes for protein interactions and protein conformations, Macromol. Rapid Commun. 28(2007) 1703-1713.

    11. [11]

      [11] S. Okada, S. Peng, W. Spevak, D. Charych, Color and chromism of polydiacetylene vesicles, Acc. Chem. Res. 31(1998) 229-239.

    12. [12]

      [12] C.H. Fan, K.W. Plaxco, A.J. Heeger, High-efficiency fluorescence quenching of conjugated polymers by proteins, J. Am. Chem. Soc. 124(2002) 5642-5643.

    13. [13]

      [13] D.J. Ahn, J.-M. Kim, Fluorogenic polydiacetylene supramolecules:immobilization, micropatterning, and application to label-free chemosensors, Acc. Chem. Res. 41(2008) 805-816.

    14. [14]

      [14] D. Day, H. Ringsdorf, Polymerization of diacetylene carbonic acid monolayers at the gas-water interface, J. Polym. Sci. Polym. Lett. Ed. 16(1978) 205-210.

    15. [15]

      [15] Y. Okawa, M. Aono, Nanoscale control of chain polymerization, Nature 409(2001) 683-684.

    16. [16]

      [16] R. Jelinek, S. Kolusheva, Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications, Biotechnol. Adv. 19(2001) 109-118.

    17. [17]

      [17] O. Endo, H. Ootsubo, N. Toda, et al., Phase transition of a single sheet of sashlike polydiacetylene atomic sash on a solid surface, J. Am. Chem. Soc. 126(2004) 9894-9895.

    18. [18]

      [18] J.M. Schnur, B.R. Ratna, J.V. Selinger, et al., Diacetylenic lipid tubules:experimental evidence for a chiral molecular architecture, Science 264(1994) 945-947.

    19. [19]

      [19] J. Song, J.S. Cisar, C.R. Bertozzi, Functional self-assembling bolaamphiphilic polydiacetylenes as colorimetric sensor scaffolds, J. Am. Chem. Soc. 126(2004) 8459-8465.

    20. [20]

      [20] D.J. Ahn, E.H. Chae, G.S. Lee, et al., Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli, J. Am. Chem. Soc. 125(2003) 8976-8977.

    21. [21]

      [21] S. Dei, T. Shimogaki, A. Matsumoto, Thermochromism of polydiacetylenes containing robust 2D hydrogen bond network of naphthylmethylammonium carboxylates, Macromolecules 41(2008) 6055-6065.

    22. [22]

      [22] S.Y. Lee, Y.Y. Cho, B.U. Ye, et al., Unprecedented colorimetric responses of polydiacetylenes driven by plasma induced polymerization and their patterning applications, Chem. Commun. 50(2014) 12447-12449.

    23. [23]

      [23] S.Y. Lee, J.Y. Lee, H.N. Kim, M.H. Kim, J.Y. Yoon, Thermally reversible polydiacetylenes derived from ethylene oxide-containing bisdiacetylenes, Sens. Actuators B 173(2012) 419-425.

    24. [24]

      [24] C.A. Sandstedt, C.J. Eckhardt, M.J. Downey, D.J. Sandman, Optical, calorimetric, and mass spectroscopic study of nonthermochromic crystalline forms of the polydiacetylene bis(ethylurethane)-5,7-dodecadiyne-1,12-diol (ETCD), Chem. Mater. 6(1994) 1346-1350.

    25. [25]

      [25] R.R. Chance, Chromism in polydiacetylene solutions and crystals, Macromolecules 13(1980) 396-398.

    26. [26]

      [26] A.D. Nava, M. Thakur, A.E. Tonelli, Carbon-13 NMR structural studies of a soluble polydiacetylene, poly(4BCMU), Macromolecules 23(1990) 3055-3063.

    27. [27]

      [27] Y. Tomioka, N. Tanaka, S. Imazeki, Effects of side-group interactions on pressureinduced chromism of polydiacetylene monolayer at a gas-water interface, Thin Solid Films 179(1989) 27-31.

    28. [28]

      [28] R.W. Carpick, D.Y. Sasaki, A.R. Burns, First observation of mechanochromism at the nanometer scale, Langmuir 16(2000) 1270-1278.

    29. [29]

      [29] R.A. Nallicheri, M.F. Rubner, Investigations of the mechanochromic behavior of poly(urethane-diacetylene) segmented copolymers, Macromolecules 24(1991) 517-525.

    30. [30]

      [30] C.G. Wang, Z.F. Ma, Colorimetric detection of oligonucleotides using a polydiacetylene vesicle sensor, Anal. Bioanal. Chem. 382(2005) 1708-1710.

    31. [31]

      [31] A. Reichert, J.O. Nagy, W. Spevak, D. Charych, Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus, J. Am. Chem. Soc. 117(1995) 829-830.

    32. [32]

      [32] Q. Cheng, R.C. Stevens, Coupling of an induced fit enzyme to polydiacetylene thin films:colorimetric detection of glucose, Adv. Mater. 9(1997) 481-483.

    33. [33]

      [33] C. Phollookin, S. Wacharasindhu, A. Ajavakom, et al., Tuning down of color transition temperature of thermochromically reversible bisdiynamide polydiacetylenes, Macromolecules 43(2010) 7540-7548.

    34. [34]

      [34] X.Q. Chen, J.Y. Yoon, A thermally reversible temperature sensor based on polydiacetylene:synthesis and thermochromic properties, Dyes Pigments 89(2011) 194-198.

    35. [35]

      [35] J.-M. Kim, J.S. Lee, H. Choi, D. Sohn, D.J. Ahn, Rational design and in-situ FTIR analyses of colorimetrically reversible polydiacetylene supramolecules, Macromolecules 38(2005) 9366-9376.

    36. [36]

      [36] L. Yu, S.L. Hsu, A spectroscopic analysis of the role of side chains in controlling thermochromic transitions in polydiacetylenes, Macromolecules 45(2012) 420-429.

    37. [37]

      [37] S.Y. Lee, J.S. Lee, J.Y. Yoon, et al., Construction and molecular understanding of an unprecedented, reversibly thermochromic bis-polydiacetylene, Adv. Funct. Mater. 24(2014) 3699-3705.

  • 加载中
    1. [1]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    2. [2]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    11. [11]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    17. [17]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    20. [20]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

Metrics
  • PDF Downloads(0)
  • Abstract views(809)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return