Citation: Shu-Ming Zhang, Gui-Xiang Wang, Peng Guo, Yu-Huan Chen. Zinc(II) coordination architectures based on 5-(1H-tetrazol-1-yl)-isophthalic acid: Synthesis, structures and luminescent properties[J]. Chinese Chemical Letters, ;2015, 26(9): 1079-1084. doi: 10.1016/j.cclet.2015.05.025 shu

Zinc(II) coordination architectures based on 5-(1H-tetrazol-1-yl)-isophthalic acid: Synthesis, structures and luminescent properties

  • Corresponding author: Shu-Ming Zhang, 
  • Received Date: 25 February 2015
    Available Online: 11 May 2015

    Fund Project: This work is supported by the Natural Science Foundation of Hebei Province (No. B2012202019) (No. B2012202019)the National Natural Science Foundation of China (No. 21206027). (No. 21206027)

  • With different pyridine-analogs as auxiliary ligands, three novel Zn(II) complexes (1-3) based on 5-(1H-tetrazol-1-yl) isophthalic acid (H2L) have been synthesized and structurally characterized. Single crystal X-ray diffraction analyses of complexes 1-3 show the presence of tetrazolyl group, as well as the coordination behavior of the auxiliary ligands as critical factors determining the structures of such Zn(II)-carboxylate coordination architectures. In addition, the resulting complexes all exhibit luminescence properties in the solid state at room temperature.
  • 加载中
    1. [1]

      [1] F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, A.P.H.J. Schenning, About supramolecular assemblies of pi-conjugated systems, Chem. Rev. 105(2005) 1491-1546.

    2. [2]

      [2] S.R. Zheng, Q.Y. Yang, Y.R. Liu, et al., Assembly of CdI2-type coordination networks from triangular ligand and octahedral metal center:topological analysis and potential framework porosity, Chem. Commun. (2008) 356-358.

    3. [3]

      [3] X.L. Tong, T.L. Hu, J.P. Zhao, et al., Chiral magnetic metal-organic frameworks of MnII with achiral tetrazolate-based ligands by spontaneous resolution, Chem. Commun. 46(2010) 8543-8545.

    4. [4]

      [4] K.H. He, Y.W. Li, Y.Q. Chen, Z. Chang, A new 8-connected self-penetrating metal-organic framework based on dinuclear cadmium clusters as secondary building units, Chin. Chem. Lett. 24(2013) 691-694.

    5. [5]

      [5] J.C. Noveron, M. Soo Lah, R.E. Del Sesto, et al., Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit, J. Am. Chem. Soc. 124(2002) 6613-6625.

    6. [6]

      [6] O. Maury, H. Le Bozec, Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes, Acc. Chem. Res. 38(2005) 691-704.

    7. [7]

      [7] C.H. Huang, S.H. Gou, H.B. Zhu, W. Huang, Cleavage of C-S bonds with the formation of a tetranuclear Cu(I) cluster, Inorg. Chem. 46(2007) 5537-5543.

    8. [8]

      [8] S. Rau, B. Schä fer, D. Gleich, et al., A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane, Angew. Chem. Int. Ed. 45(2006) 6215-6218.

    9. [9]

      [9] S.M. Zhang, Z. Chang, T.L. Hu, X.H. Bu, New three-dimensional porousmetal organic frameworkwith tetrazole functionalized aromatic carboxylic acid:synthesis, structure, and gas adsorption properties, Inorg. Chem. 49(2010) 11581-11586.

    10. [10]

      [10] S. Kume, M. Murata, T. Ozeki, H. Nishihara, Reversible photoelectronic signal conversion based on photoisomerization-controlled coordination change of azobenzene-bipyridine ligands to copper, J. Am. Chem. Soc. 127(2005) 490-491.

    11. [11]

      [11] K. Kinbara, T. Aida, Toward intelligent molecular machines:directed motions of biological and artificial molecules and assemblies, Chem. Rev. 105(2005) 1377-1400.

    12. [12]

      [12] L. Wang, R. Zhao, L.Y. Xu, et al., The synthesis, structure, and magnetic properties of two novel manganese(II) azido/formate coordination polymers with isonicotinic acid N-oxide as a coligand, CrystEngComm. 16(2014) 2070-2077.

    13. [13]

      [13] R.M. Wen, S.D. Han, H. Wang, Y.H. Zhang, Synthesis, structure and magnetic properties of manganese(II) coordination polymer with azido and zwitterionic dicarboxylate ligand, Chin. Chem. Lett. 25(2014) 854-858.

    14. [14]

      [14] S. Banfi, L. Carlucci, E. Caruso, G. Ciani, D.M. Proserpio, Using long bis(4-pyridyl) ligands designed for the self-assembly of coordination frameworks and architectures, J. Chem. Soc. Dalton Trans. (2002) 2714-2721.

    15. [15]

      [15] Y.B. Xie, C. Zhang, J.R. Li, X.H. Bu, Polymeric silver(I) complexes with pyridyl dithioether ligands:experimental and theoretical investigations on the coordination properties of the ligands, Dalton Trans. (2004) 562-569.

    16. [16]

      [16] S.M. Zhang, T.L. Hu, J.R. Li, J.L. Du, X.H. Bu, Silver(I) coordination architectures with quinoxaline-based N,S-donor ligands:structures and luminescent properties, CrystEngComm. 10(2008) 1595-1604.

    17. [17]

      [17] M.A. Withersby, A.J. Blake, N.R. Champness, et al., Solvent control in the synthesis of 3,6-bis(pyridin-3-yl)-1,2,4,5-tetrazine-bridged cadmium(II) and zinc(II) coordination polymers, Inorg. Chem. 38(1999) 2259-2266.

    18. [18]

      [18] N.P. Chatterton, D.M.L. Goodgame, D.A. Grachvogel, et al., Influence of the counteranion on the formation of polymeric networks by metal complexes of hexamethylenebis(acetamide), Inorg. Chem. 40(2001) 312-317.

    19. [19]

      [19] Z. Chang, D.S. Zhang, Q. Chen, et al., Rational construction of 3D pillared metal-organic frameworks:synthesis, structures, and hydrogen adsorption properties, Inorg. Chem. 50(2011) 7555-7562.

    20. [20]

      [20] X. Zhang, L. Hou, B. Liu, et al., Syntheses, structures, and luminescent properties of six new zinc(II) coordination polymers constructed by flexible tetracarboxylate and various pyridine ligands, Cryst. Growth Des. 13(2013) 3177-3187.

    21. [21]

      [21] X. Zhu, Q. Chen, Z. Yang, B.L. Li, H.Y. Li, Tuning zinc(II) coordination polymers based on bis(1,2,4-triazol-1-yl)ethane and 5-substituted 1,3-benzenedicarboxylates:syntheses, structures and properties, CrystEngComm. 15(2013) 471-481.

    22. [22]

      [22] Z. Chen, B. Zhao, Y. Zhang, W. Shi, P. Cheng, Construction and characterization of several new lanthanide-organic frameworks:from 2D lattice to 2D Double-layer and to porous 3D net with interweaving triple-stranded helixes, Cryst. Growth Des. 8(2008) 2291-2298.

    23. [23]

      [23] S.M. Zhang, T.L. Hu, J.L. Du, X.H. Bu, Tuning the formation of copper(I) coordination architectures with quinoxaline-based N,S-donor ligands by varying terminal groups of ligands and reaction temperature, Inorg. Chim. Acta 362(2009) 3915-3924.

    24. [24]

      [24] Y.L. Yao, L. Xue, Y.X. Che, J.M. Zheng, Syntheses, structures, and characterizations of two pairs of Cd(II)-5-aminotetrazolate coordination polymers, Cryst. Growth Des. 9(2008) 606-610.

    25. [25]

      [25] X.C. Huang, J.P. Zhang, X.M. Chen, A new route to supramolecular isomers via molecular templating:nanosized molecular polygons of copper(I) 2-methylimidazolates, J. Am. Chem. Soc. 126(2004) 13218-13219.

    26. [26]

      [26] M.O. Awaleh, A. Badia, F. Brisse, X.H. Bu, Synthesis and characterization of silver(I) coordination networks bearing flexible thioethers:anion versus ligand dominated structures, Inorg. Chem. 45(2006) 1560-1574.

    27. [27]

      [27] T.L. Hu, Y. Tao, Z. Chang, X.H. Bu, Zinc(II) complexes with a versatile multitopic tetrazolate-based ligand showing various structures:impact of reaction conditions on the final product structures, Inorg. Chem. 50(2011) 10994-11003.

    28. [28]

      [28] C.V. Krishnamohan Sharma, G.A. Broker, J.G. Huddleston, et al., Design strategies for solid-state supramolecular arrays containing both mixed-metalated and freebase porphyrins, J. Am. Chem. Soc. 121(1999) 1137-1144.

    29. [29]

      [29] D. Guo, K.L. Pang, C.Y. Duan, C. He, Q.J. Meng, Design and crystal structures of triple helicates with crystallographic idealized D3 symmetry:the role of side chain effect on crystal packing, Inorg. Chem. 41(2002) 5978-5985.

    30. [30]

      [30] L. Pan, M.B. Sander, X.Y. Huang, et al., Microporous metal organic materials:promising candidates as sorbents for hydrogen storage, J. Am. Chem. Soc. 126(2004) 1308-1309.

    31. [31]

      [31] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material, Science 283(1999) 1148-1150.

    32. [32]

      [32] D.K. Kumar, A. Das, P. Dastidar, One-dimensional chains, two-dimensional corrugated sheets having a cross-linked helix in metal-organic frameworks:exploring hydrogen-bond capable backbones and ligating topologies in mixed ligand systems, Cryst. Growth Des. 6(2006) 1903-1909.

    33. [33]

      [33] Y.F. Zhou, F.L. Jiang, D.Q. Yuan, et al., Copper complex cation templated gadolinium(III)-isophthalate frameworks, Angew. Chem. Int. Ed. 43(2004) 5665-5668.

    34. [34]

      [34] F.N. Dai, H.Y. He, D.L. Gao, et al., Self-assembly of 2D zinc metal-organic frameworks based on mixed organic ligands, Inorg. Chim. Acta 362(2009) 3987-3992.

    35. [35]

      [35] F. Nouar, J.F. Eubank, T. Bousquet, et al., Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks, J. Am. Chem. Soc. 130(2008) 1833-1835.

    36. [36]

      [36] S.V. Voitekhovich, A.N. Vorobév, P.N. Gaponik, O.A. Ivashkevich, Synthesis of new functionally substituted 1-R-tetrazoles and their 5-amino derivatives, Chem. Heterocycl. Compd. 41(2005) 999-1004.

    37. [37]

      [37] A.X.S. Bruker, SAINT Software Reference Manual, Madison, WI, 1998.

    38. [38]

      [38] G.M. Sheldrick, SADABS, Siemens Area Detector Absorption Corrected Software, University of Göttingen, Germany, 1996.

    39. [39]

      [39] M. O'Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets, Acc. Chem. Res. 41(2008) 1782-1789.

    40. [40]

      [40] L. Xu, G.C. Guo, B. Liu, M.S. Wang, J.S. Huang, 2-D open frameworks and blue fluorescence of two new zinc coordination polymers with mixed ligands, Inorg. Chem. Commun. 7(2004) 1145-1149.

    41. [41]

      [41] L.F. Ma, Y.Y. Wang, J.Q. Liu, et al., Delicate substituent effect of isophthalate tectons on the structural assembly of diverse 4-connected metal-organic frameworks (MOFs), CrystEngComm. 11(2009) 1800-1802.

    42. [42]

      [42] M. Chen, Y. Lu, J. Fan, et al., High structural diversity controlled by temperature and induction agent, CrystEngComm. 14(2012) 2015-2023.

    43. [43]

      [43] D.M. Ciurtin, N.G. Pschirer, M.D. Smith, U.H.F. Bunz, H.C. zur Loye, Two luminescent coordination polymers with a triple-helix structure:HgX2(C31H24N2)·CH2Cl2(X=Cl and Br), Chem. Mater. 13(2001) 2743-2745.

    44. [44]

      [44] R.L. Sang, L. Xu, A series of single, double, and triple Me2biim-bridged dinuclear, trinuclear, and polymeric complexes:syntheses, crystal structures, and luminescent properties, Inorg. Chem. 44(2005) 3731-3737.

    45. [45]

      [45] Z.W. Wei, Z.Y. Gu, R.K. Arvapally, et al., Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement, J. Am. Chem. Soc. 136(2014) 8269-8276.

    46. [46]

      [46] K.L. Zhang, C.T. Hou, J.J. Song, et al., Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(II)-organic frameworks:syntheses, structures and properties, CrystEngComm. 14(2012) 590-600.

  • 加载中
    1. [1]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    10. [10]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    11. [11]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    12. [12]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    13. [13]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    14. [14]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    17. [17]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    18. [18]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    19. [19]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    20. [20]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

Metrics
  • PDF Downloads(0)
  • Abstract views(755)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return