Citation:
Maryam Mirabedini, Elaheh Motamedi, Mohammad Zaman Kassaee. Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines[J]. Chinese Chemical Letters,
;2015, 26(9): 1085-1090.
doi:
10.1016/j.cclet.2015.05.021
-
Magnetically separable CuO nanoparticles supported on graphene oxide (Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH, at 90℃. Fe3O4 NPs/GO-CuO NPs is found to be an efficient catalyst for the A3-coupling of aldehydes, amines, and alkynes through C-H activation. Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields.
-
Keywords:
- CuO,
- Graphene oxide,
- Fe3O4,
- A3-coupling,
- Nano-catalyst,
- Magnetic nanoparticles
-
-
-
[1]
[1] C.M. Wei, Z.G. Li, C.-J. Li, The development of A3-coupling (aldehyde-alkyne-amine) and AA3-coupling (asymmetric aldehyde-alkyne-amine), Synlett (2004) 1472-1483.
-
[2]
[2] L. Zani, C. Bolm, Direct addition of alkynes to imines and related C=N electrophiles:a convenient access to propargylamines, Chem. Commun. (2006) 4263-4275.
-
[3]
[3] C.M. Wei, Z.G. Li, C.-J. Li, The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine, Org. Lett. 5(2003) 4473-4475.
-
[4]
[4] V.A. Peshkov, O.P. Pereshivko, E.V. Van der Eycken, A walk around the A3-coupling, Chem. Soc. Rev. 41(2012) 3790-3807.
-
[5]
[5] W. Shi, C. Liu, A.W. Lei, Transition-metal catalyzed oxidative cross-coupling reactions to form C-C bonds involving organometallic reagents as nucleophiles, Chem. Soc. Rev. 40(2011) 2761-2776.
-
[6]
[6] A.A. Boulton, B.A. Davis, D.A. Durden, et al., Aliphatic propargylamines:new antiapoptotic drugs, Drug Dev. Res. 42(1997) 150-156.
-
[7]
[7] E.-S. Lee, H.-S. Yeom, J.-H. Hwang, et al., A practical gold-catalyzed route to 4-substituted oxazolidin-2-ones from N-boc propargylamines, Eur. J. Org. Chem. 2007(2007) 3503-3507.
-
[8]
[8] A. Kochman, J. Skolimowski, L. Gêbicka, D. Metodiewa, Antioxidant properties of newly synthesized N-propargylamine derivatives of nitroxyl:a comparison with deprenyl, Pol. J. Pharmacol. 55(2003) 389-400.
-
[9]
[9] F.P. Xiao, Y.L. Chen, Y. Liu, J.B. Wang, Sequential catalytic process:synthesis of quinoline derivatives by AuCl3CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes, Tetrahedron 64(2008) 2755-2761.
-
[10]
[10] D. Shibata, E. Okada, J. Molette, M. Médebielle, Facile synthesis of fluorinecontaining 1,10-phenanthrolines by the pyridine-ring formation reaction of Npropargyl-5,7-bis(trifluoroacetyl)-8-quinolylamine with amines:isolation of the intermediates 1,4-dihydro-1,10-phenanthrolin-4-ols, Tetrahedron Lett. 49(2008) 7161-7164.
-
[11]
[11] D.F. Harvey, D.M. Sigano, Synthesis of cyclopropylpyrrolidines via reaction of Nallyl-N-propargylamides with a molybdenum carbene complex:effect of substituents and reaction conditions, J. Org. Chem. 61(1996) 2268-2272.
-
[12]
[12] B. Yan, Y.H. Liu, Gold-catalyzed multicomponent synthesis of aminoindolizines from aldehydes, amines, and alkynes under solvent-free conditions or in water, Org. Lett. 9(2007) 4323-4326.
-
[13]
[13] M.E. Jung, A. Huang, Use of optically active cyclic N,N-dialkyl aminals in asymmetric induction, Org. Lett. 2(2000) 2659-2661.
-
[14]
[14] R. Bloch, Additions of organometallic reagents to C=N bonds:reactivity and selectivity, Chem. Rev. 98(1998) 1407-1438.
-
[15]
[15] S. Samai, G.C. Nandi, M.S. Singh, An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C-H activation catalyzed by NiCl2, Tetrahedron Lett. 51(2010) 5555-5558.
-
[16]
[16] C.M. Wei, C.-J. Li, Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper (I) pybox complex in water and in toluene, J. Am. Chem. Soc. 124(2002) 5638-5639.
-
[17]
[17] V.K.-Y. Lo, Y.G. Liu, M.-K. Wong, C.-M. Che, Gold (III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction, Org. Lett. 8(2006) 1529-1532.
-
[18]
[18] J.X. Ji, T.T.-L. Au-Yeung, J. Wu, C.W. Yip, A.S.C. Chan, Efficient synthesis of β, γ-alkynyl α-amino acid derivatives by Ag (I)-catalyzed alkynylation of α-imino esters, Adv. Synth. Catal. 346(2004) 42-44.
-
[19]
[19] N. Gommermann, P. Knochel, Preparation of functionalized primary chiral amines and amides via an enantioselective three-component synthesis of propargylamines, Tetrahedron 61(2005) 11418-11426.
-
[20]
[20] N.G. Dipl.-Chem, C. Koradin, K. Polborn, P. Knochel, Enantioselective, copper (I)-catalyzed three-component reaction for the preparation of propargylamines, Angew. Chem. Int. Ed. 42(2003) 5763-5766.
-
[21]
[21] G.W. Kabalka, L.-L. Zhou, L. Wang, R.M. Pagni, A microwave-enhanced, solventless Mannich condensation of terminal alkynes and secondary amines with paraformaldehyde on cuprous iodide doped alumina, Tetrahedron 62(2006) 857-867.
-
[22]
[22] C. Fischer, E.M. Carreira, Zn-alkynylide additions to acyl iminiums, Org. Lett. 6(2004) 1497-1499.
-
[23]
[23] W.-W. Chen, R.V. Nguyen, C.-J. Li, Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air, Tetrahedron Lett. 50(2009) 2895-2898.
-
[24]
[24] J.S. Yadav, B.V. Subba Reddy, A.V. Hara Gopal, K.S. Patil, InBr3-catalyzed threecomponent reaction:a facile synthesis of propargyl amines, Tetrahedron Lett. 50(2009) 3493-3496.
-
[25]
[25] Y.C. Zhang, P.H. Li, M. Wang, L. Wang, Indium-catalyzed highly efficient threecomponent coupling of aldehyde, alkyne, and amine via C-H bond activation, J. Org. Chem. 74(2009) 4364-4367.
-
[26]
[26] C. Fischer, E.M. Carreira, Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir (I) complex, Org. Lett. 3(2001) 4319-4321.
-
[27]
[27] P.H. Li, L. Wang, Mercurous chloride catalyzed Mannich condensation of terminal alkynes with secondary amines and aldehydes, Chin. J. Chem. 23(2005) 1076-1080.
-
[28]
[28] L.C. Akullian, M.L. Snapper, A.H. Hoveyda, Three-component enantioselective synthesis of propargylamines through Zr-catalyzed additions of alkyl zinc reagents to alkynylimines, Angew. Chem. Int. Ed. 42(2003) 4244-4247.
-
[29]
[29] Y. Kuninobu, P. Yu, K. Takai, Rhenium-catalyzed[2+2] cycloadditions of norbornenes with internal and terminal acetylenes, Chem. Lett. 36(2007) 1162-1163.
-
[30]
[30] C.-J. Li, The development of catalytic nucleophilic additions of terminal alkynes in water, Acc. Chem. Res. 43(2010) 581-590.
-
[31]
[31] D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2008.
-
[32]
[32] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chem. 12(2010) 743-754.
-
[33]
[33] R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev. 38(2009) 481-494.
-
[34]
[34] P.R. Likhar, S. Roy, M. Roy, et al., Silica-immobilized CuI:an efficient reusable catalyst for three-component coupling reaction of aldehyde, amine and alkyne, Synlett 2007(2007) 2301-2303.
-
[35]
[35] B. Sreedhar, P. Surendra Reddy, C.S. Vamsi Krishna, P. Vijaya Babu, An efficient synthesis of propargylamines using a silica gel anchored copper chloride catalyst in an aqueous medium, Tetrahedron Lett. 48(2007) 7882-7886.
-
[36]
[36] M.L. Kantam, J. Yadav, S. Laha, et al., Synthesis of propargylamines by threecomponent coupling of aldehydes, amines and alkynes catalyzed by magnetically separable copper ferrite nanoparticles, Synlett 2009(2009) 1791-1794.
-
[37]
[37] M. Kidwai, V. Bansal, N.K. Mishra, A. Kumar, S. Mozumdar, Copper-nanoparticlecatalyzed A3coupling via CH activation, Synlett 2007(2007) 1581-1584.
-
[38]
[38] M. Lakshmi Kantam, S. Laha, J. Yadav, S. Bhargava, An efficient synthesis of propargylamines via three-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystalline copper (II) oxide, Tetrahedron Lett. 49(2008) 3083-3086.
-
[39]
[39] M.J. Aliaga, D.J. Ramó n, M. Yus, Impregnated copper on magnetite:an efficient and green catalyst for the multicomponent preparation of propargylamines under solvent free conditions, Org. Biomol. Chem. 8(2010) 43-46.
-
[40]
[40] P.D. Stevens, G.F. Li, J.D. Fan, M. Yen, Y. Gao, Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions, Chem. Commun. (2005) 4435-4437.
-
[41]
[41] J.H. Deng, X.H. Wen, Q.N. Wang, Solvothermal in situ synthesis of Fe3O4-multiwalled carbon nanotubes with enhanced heterogeneous Fenton-like activity, Mater. Res. Bull. 47(2012) 3369-3376.
-
[42]
[42] A. Prakash, S. Chandra, D. Bahadur, Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium, Carbon 50(2012) 4209-4219.
-
[43]
[43] T. Zeng, X.L. Zhang, Y.R. Ma, H.Y. Niu, Y.Q. Cai, A novel Fe3O4-graphene-Au multifunctional nanocomposite:green synthesis and catalytic application, J. Mater. Chem. 22(2012) 18658-18663.
-
[44]
[44] M.Z. Kassaee, E. Motamedi, B. Movassagh, S. Poursadeghi, Iron-catalyzed formation of C-Se and C-Te bonds through cross coupling of aryl halides with Se (0) and Te (0)/Nano-Fe3O4@GO, Synthesis 45(2013) 2337-2342.
-
[45]
[45] M.Z. Kassaee, E. Motamedi, M. Majdi, Magnetic Fe3O4-graphene oxide/polystyrene:fabrication and characterization of a promising nanocomposite, Chem. Eng. J. 172(2011) 540-549.
-
[46]
[46] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1339.
-
[47]
[47] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon 44(2006) 3342-3347.
-
[1]
-
-
-
[1]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[2]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[3]
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
-
[4]
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
-
[5]
Xiao-Fang Lv , Xiao-Yun Ran , Yu Zhao , Rui-Rui Zhang , Li-Na Zhang , Jing Shi , Ji-Xuan Xu , Qing-Quan Kong , Xiao-Qi Yu , Kun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027
-
[6]
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
-
[7]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[8]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[9]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[10]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[11]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[12]
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
-
[13]
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
-
[14]
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
-
[15]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[16]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[17]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[18]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[19]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[20]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(884)
- HTML views(34)