Citation: Maryam Mirabedini, Elaheh Motamedi, Mohammad Zaman Kassaee. Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines[J]. Chinese Chemical Letters, ;2015, 26(9): 1085-1090. doi: 10.1016/j.cclet.2015.05.021 shu

Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines

  • Corresponding author: Mohammad Zaman Kassaee, 
  • Received Date: 8 February 2015
    Available Online: 29 April 2015

  • Magnetically separable CuO nanoparticles supported on graphene oxide (Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH, at 90℃. Fe3O4 NPs/GO-CuO NPs is found to be an efficient catalyst for the A3-coupling of aldehydes, amines, and alkynes through C-H activation. Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields.
  • 加载中
    1. [1]

      [1] C.M. Wei, Z.G. Li, C.-J. Li, The development of A3-coupling (aldehyde-alkyne-amine) and AA3-coupling (asymmetric aldehyde-alkyne-amine), Synlett (2004) 1472-1483.

    2. [2]

      [2] L. Zani, C. Bolm, Direct addition of alkynes to imines and related C=N electrophiles:a convenient access to propargylamines, Chem. Commun. (2006) 4263-4275.

    3. [3]

      [3] C.M. Wei, Z.G. Li, C.-J. Li, The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine, Org. Lett. 5(2003) 4473-4475.

    4. [4]

      [4] V.A. Peshkov, O.P. Pereshivko, E.V. Van der Eycken, A walk around the A3-coupling, Chem. Soc. Rev. 41(2012) 3790-3807.

    5. [5]

      [5] W. Shi, C. Liu, A.W. Lei, Transition-metal catalyzed oxidative cross-coupling reactions to form C-C bonds involving organometallic reagents as nucleophiles, Chem. Soc. Rev. 40(2011) 2761-2776.

    6. [6]

      [6] A.A. Boulton, B.A. Davis, D.A. Durden, et al., Aliphatic propargylamines:new antiapoptotic drugs, Drug Dev. Res. 42(1997) 150-156.

    7. [7]

      [7] E.-S. Lee, H.-S. Yeom, J.-H. Hwang, et al., A practical gold-catalyzed route to 4-substituted oxazolidin-2-ones from N-boc propargylamines, Eur. J. Org. Chem. 2007(2007) 3503-3507.

    8. [8]

      [8] A. Kochman, J. Skolimowski, L. Gêbicka, D. Metodiewa, Antioxidant properties of newly synthesized N-propargylamine derivatives of nitroxyl:a comparison with deprenyl, Pol. J. Pharmacol. 55(2003) 389-400.

    9. [9]

      [9] F.P. Xiao, Y.L. Chen, Y. Liu, J.B. Wang, Sequential catalytic process:synthesis of quinoline derivatives by AuCl3CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes, Tetrahedron 64(2008) 2755-2761.

    10. [10]

      [10] D. Shibata, E. Okada, J. Molette, M. Médebielle, Facile synthesis of fluorinecontaining 1,10-phenanthrolines by the pyridine-ring formation reaction of Npropargyl-5,7-bis(trifluoroacetyl)-8-quinolylamine with amines:isolation of the intermediates 1,4-dihydro-1,10-phenanthrolin-4-ols, Tetrahedron Lett. 49(2008) 7161-7164.

    11. [11]

      [11] D.F. Harvey, D.M. Sigano, Synthesis of cyclopropylpyrrolidines via reaction of Nallyl-N-propargylamides with a molybdenum carbene complex:effect of substituents and reaction conditions, J. Org. Chem. 61(1996) 2268-2272.

    12. [12]

      [12] B. Yan, Y.H. Liu, Gold-catalyzed multicomponent synthesis of aminoindolizines from aldehydes, amines, and alkynes under solvent-free conditions or in water, Org. Lett. 9(2007) 4323-4326.

    13. [13]

      [13] M.E. Jung, A. Huang, Use of optically active cyclic N,N-dialkyl aminals in asymmetric induction, Org. Lett. 2(2000) 2659-2661.

    14. [14]

      [14] R. Bloch, Additions of organometallic reagents to C=N bonds:reactivity and selectivity, Chem. Rev. 98(1998) 1407-1438.

    15. [15]

      [15] S. Samai, G.C. Nandi, M.S. Singh, An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C-H activation catalyzed by NiCl2, Tetrahedron Lett. 51(2010) 5555-5558.

    16. [16]

      [16] C.M. Wei, C.-J. Li, Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper (I) pybox complex in water and in toluene, J. Am. Chem. Soc. 124(2002) 5638-5639.

    17. [17]

      [17] V.K.-Y. Lo, Y.G. Liu, M.-K. Wong, C.-M. Che, Gold (III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction, Org. Lett. 8(2006) 1529-1532.

    18. [18]

      [18] J.X. Ji, T.T.-L. Au-Yeung, J. Wu, C.W. Yip, A.S.C. Chan, Efficient synthesis of β, γ-alkynyl α-amino acid derivatives by Ag (I)-catalyzed alkynylation of α-imino esters, Adv. Synth. Catal. 346(2004) 42-44.

    19. [19]

      [19] N. Gommermann, P. Knochel, Preparation of functionalized primary chiral amines and amides via an enantioselective three-component synthesis of propargylamines, Tetrahedron 61(2005) 11418-11426.

    20. [20]

      [20] N.G. Dipl.-Chem, C. Koradin, K. Polborn, P. Knochel, Enantioselective, copper (I)-catalyzed three-component reaction for the preparation of propargylamines, Angew. Chem. Int. Ed. 42(2003) 5763-5766.

    21. [21]

      [21] G.W. Kabalka, L.-L. Zhou, L. Wang, R.M. Pagni, A microwave-enhanced, solventless Mannich condensation of terminal alkynes and secondary amines with paraformaldehyde on cuprous iodide doped alumina, Tetrahedron 62(2006) 857-867.

    22. [22]

      [22] C. Fischer, E.M. Carreira, Zn-alkynylide additions to acyl iminiums, Org. Lett. 6(2004) 1497-1499.

    23. [23]

      [23] W.-W. Chen, R.V. Nguyen, C.-J. Li, Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air, Tetrahedron Lett. 50(2009) 2895-2898.

    24. [24]

      [24] J.S. Yadav, B.V. Subba Reddy, A.V. Hara Gopal, K.S. Patil, InBr3-catalyzed threecomponent reaction:a facile synthesis of propargyl amines, Tetrahedron Lett. 50(2009) 3493-3496.

    25. [25]

      [25] Y.C. Zhang, P.H. Li, M. Wang, L. Wang, Indium-catalyzed highly efficient threecomponent coupling of aldehyde, alkyne, and amine via C-H bond activation, J. Org. Chem. 74(2009) 4364-4367.

    26. [26]

      [26] C. Fischer, E.M. Carreira, Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir (I) complex, Org. Lett. 3(2001) 4319-4321.

    27. [27]

      [27] P.H. Li, L. Wang, Mercurous chloride catalyzed Mannich condensation of terminal alkynes with secondary amines and aldehydes, Chin. J. Chem. 23(2005) 1076-1080.

    28. [28]

      [28] L.C. Akullian, M.L. Snapper, A.H. Hoveyda, Three-component enantioselective synthesis of propargylamines through Zr-catalyzed additions of alkyl zinc reagents to alkynylimines, Angew. Chem. Int. Ed. 42(2003) 4244-4247.

    29. [29]

      [29] Y. Kuninobu, P. Yu, K. Takai, Rhenium-catalyzed[2+2] cycloadditions of norbornenes with internal and terminal acetylenes, Chem. Lett. 36(2007) 1162-1163.

    30. [30]

      [30] C.-J. Li, The development of catalytic nucleophilic additions of terminal alkynes in water, Acc. Chem. Res. 43(2010) 581-590.

    31. [31]

      [31] D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2008.

    32. [32]

      [32] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chem. 12(2010) 743-754.

    33. [33]

      [33] R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev. 38(2009) 481-494.

    34. [34]

      [34] P.R. Likhar, S. Roy, M. Roy, et al., Silica-immobilized CuI:an efficient reusable catalyst for three-component coupling reaction of aldehyde, amine and alkyne, Synlett 2007(2007) 2301-2303.

    35. [35]

      [35] B. Sreedhar, P. Surendra Reddy, C.S. Vamsi Krishna, P. Vijaya Babu, An efficient synthesis of propargylamines using a silica gel anchored copper chloride catalyst in an aqueous medium, Tetrahedron Lett. 48(2007) 7882-7886.

    36. [36]

      [36] M.L. Kantam, J. Yadav, S. Laha, et al., Synthesis of propargylamines by threecomponent coupling of aldehydes, amines and alkynes catalyzed by magnetically separable copper ferrite nanoparticles, Synlett 2009(2009) 1791-1794.

    37. [37]

      [37] M. Kidwai, V. Bansal, N.K. Mishra, A. Kumar, S. Mozumdar, Copper-nanoparticlecatalyzed A3coupling via CH activation, Synlett 2007(2007) 1581-1584.

    38. [38]

      [38] M. Lakshmi Kantam, S. Laha, J. Yadav, S. Bhargava, An efficient synthesis of propargylamines via three-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystalline copper (II) oxide, Tetrahedron Lett. 49(2008) 3083-3086.

    39. [39]

      [39] M.J. Aliaga, D.J. Ramó n, M. Yus, Impregnated copper on magnetite:an efficient and green catalyst for the multicomponent preparation of propargylamines under solvent free conditions, Org. Biomol. Chem. 8(2010) 43-46.

    40. [40]

      [40] P.D. Stevens, G.F. Li, J.D. Fan, M. Yen, Y. Gao, Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions, Chem. Commun. (2005) 4435-4437.

    41. [41]

      [41] J.H. Deng, X.H. Wen, Q.N. Wang, Solvothermal in situ synthesis of Fe3O4-multiwalled carbon nanotubes with enhanced heterogeneous Fenton-like activity, Mater. Res. Bull. 47(2012) 3369-3376.

    42. [42]

      [42] A. Prakash, S. Chandra, D. Bahadur, Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium, Carbon 50(2012) 4209-4219.

    43. [43]

      [43] T. Zeng, X.L. Zhang, Y.R. Ma, H.Y. Niu, Y.Q. Cai, A novel Fe3O4-graphene-Au multifunctional nanocomposite:green synthesis and catalytic application, J. Mater. Chem. 22(2012) 18658-18663.

    44. [44]

      [44] M.Z. Kassaee, E. Motamedi, B. Movassagh, S. Poursadeghi, Iron-catalyzed formation of C-Se and C-Te bonds through cross coupling of aryl halides with Se (0) and Te (0)/Nano-Fe3O4@GO, Synthesis 45(2013) 2337-2342.

    45. [45]

      [45] M.Z. Kassaee, E. Motamedi, M. Majdi, Magnetic Fe3O4-graphene oxide/polystyrene:fabrication and characterization of a promising nanocomposite, Chem. Eng. J. 172(2011) 540-549.

    46. [46]

      [46] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1339.

    47. [47]

      [47] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon 44(2006) 3342-3347.

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    3. [3]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    4. [4]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    5. [5]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    6. [6]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    12. [12]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    16. [16]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    19. [19]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(0)
  • Abstract views(884)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return