Citation: P. Pradeepa, S. Edwinraj, M. Ramesh Prabhu. Effects of ceramic filler in poly(vinyl chloride)/poly(ethyl methacrylate) based polymer blend electrolytes[J]. Chinese Chemical Letters, ;2015, 26(9): 1191-1196. doi: 10.1016/j.cclet.2015.05.007 shu

Effects of ceramic filler in poly(vinyl chloride)/poly(ethyl methacrylate) based polymer blend electrolytes

  • Corresponding author: M. Ramesh Prabhu, 
  • Received Date: 25 January 2015
    Available Online: 29 April 2015

  • Effects of nano-ceramic filler titanium oxide (TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of poly(vinyl chloride) (PVC)/poly(ethyl methacrylate) (PEMA), and lithium perchlorate (LiClO4). The composite polymer blend electrolytes were prepared by solvent casting technique. The TiO2 nanofillers were homogeneously dispersed in the polymer electrolyte matrix and exhibited excellent interconnection with PVC/PEMA/PC/LiClO4 polymer electrolyte. The addition of TiO2 nanofillers improved the ionic conductivity of the polymer electrolyte to some extent when the content of TiO2 is 15 wt%. The addition of TiO2 also enhanced the thermal stability of the electrolyte. The changes in the structural and complex formation properties of the materials are studied by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The scanning electronmicroscope image of nano-composite polymer electrolyte membrane confirms that the TiO2 nanoparticles were distributed uniformly in the polymer matrix.
  • 加载中
    1. [1]

      [1] M.Q. Zhang, U. Sundaraj, Thermal, rheological, and mechanical behaviors of LLDPE/PEMA/clay nanocomposites:effect of interaction between polymer, compatibilizer, and nanofiller, Macromol. Mater. Eng. 291(2006) 697-706.

    2. [2]

      [2] J. Adebahr, N. Byrne, M. Forsyth, D.R. Macfarlane, P. Jacobsson, Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles, Electrochim. Acta 48(2003) 2099-2103.

    3. [3]

      [3] E.M. Abdelrazek, Influence of FeCl3 filler on the structure and physical properties of polyethyl-methacrylate films, Physica B 400(2007) 26-32.

    4. [4]

      [4] Y.-J. Lim, Y.-H. An, N.-J. Jo, Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery, Nanoscale Res. Lett. 7(2012) 19.

    5. [5]

      [5] K.B. Money, K. Hariharan, J. Swenson, A dielectric relaxation study of nanocomposite polymer electrolytes, Solid State Ion. 225(2012) 346-349.

    6. [6]

      [6] A.R. Polu, R. Kumar, Ionic conductivity and electrochemical cell studies of new Mg2+ ion conducting PVA/PEG based polymer blend electrolytes, Adv. Mater. Lett. 4(2013) 543-547.

    7. [7]

      [7] K.M. Kim, N.-G. Park, K.S. Ryu, S.H. Chang, Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles, Polymer 43(2002) 3951-3957.

    8. [8]

      [8] M. Ulaganathan, R. Nithya, S. Rajendran, S. Raghu, Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications, Solid State Ion. 218(2012) 7-12.

    9. [9]

      [9] T. Fahmy, M.T. Ahmed, Thermal induced structural change investigations in PVC/PEMA polymer blend, Polym. Test. 20(2001) 477-484.

    10. [10]

      [10] N.A. Zakaria, M.I.N. Isa, N.S. Mohamed, R.H.Y. Subban, Characterization of polyvinyl chloride/polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes, J. Appl. Polym. Sci. 126(2012) E419-E424.

    11. [11]

      [11] S. Rajendran, R.S. Babu, K.R. Devi, Ionic conduction behavior in PVC-PEG blend polymer electrolytes upon the addition of TiO2, Ionics 15(2009) 61-66.

    12. [12]

      [12] S. Rajendran, M. Ramesh Prabhu, M. Usha Rani, Characterization of PVC/PEMA based polymer blend electrolytes, Int. J. Electrochem. Sci. 3(2008) 282-290.

    13. [13]

      [13] S. Rajendran, M. Ramesh Prabhu, M. Usha Rani, Ionic conduction in poly(vinyl chloride)/poly(ethyl methacrylate)-based polymer blend electrolytes complexed with different lithium salts, J. Power Sources 180(2008) 880-883.

    14. [14]

      [14] M. Ulaganathan, C.M. Mathew, S. Rajendran, Highly porous lithium-ion conducting solvent-free poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ethyl methacrylate) based polymer blend electrolytes for Li battery applications, Electrochim. Acta 93(2013) 230-235.

    15. [15]

      [15] S. Rajendran, K. Kesavan, R. Nithya, M. Ulaganathan, Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li-ion battery applications, Curr. Appl. Phys. 12(2012) 789-793.

    16. [16]

      [16] Y.J. Wang, D. Kim, Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes, Electrochim. Acta 52(2007) 3181-3189.

    17. [17]

      [17] S. Rajendran, T. Uma, Effect of ceramic oxide on PMMA based polymer electrolyte systems, Mater. Lett. 45(2000) 191-196.

    18. [18]

      [18] V. Aravindan, J. Gnanaraj, S. Madhavi, H.-K. Liu, Lithium-ion conducting electrolyte salts for lithium batteries, Chemistry 17(2011) 14326-14346.

  • 加载中
    1. [1]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    2. [2]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    3. [3]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    4. [4]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    5. [5]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    11. [11]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    12. [12]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    13. [13]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    14. [14]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    15. [15]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    16. [16]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    19. [19]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    20. [20]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return