Citation:
Seyed Meysam Baghbanian. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives[J]. Chinese Chemical Letters,
;2015, 26(9): 1113-1116.
doi:
10.1016/j.cclet.2015.04.037
-
In this work, the natural nanozeolite clinoptilolite (Nano CP) was successfully functionalized by propylsulfonic acid and applied as efficient heterogeneous catalyst for the synthesis of quinoxaline derivatives in aqueous media. The nanocatalyst was characterized by various techniques such as CHN, XRD, FT-IR, BET, TGA/DTA, SEM, TEM and TEM-EDS. The results show its applicability as green, reusable and promising catalyst in organic synthesis. It was found that the nanocatalysts could be recycled and reused eight times without significant loss of catalytic activities.
-
-
-
[1]
[1] A. Burguete, E. Pontiki, D. Hadjipavlou-Litina, Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues, Bioorg. Med. Chem. Lett. 17(2007) 6439-6443.
-
[2]
[2] J.Y. Jaung, Synthesis and halochromism of new quinoxaline fluorescent dyes, Dyes Pigm. 71(2006) 245-250.
-
[3]
[3] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C. Tzeng, Synthesis and antibacterial evaluation of certain quinolone derivatives, J. Med. Chem. 44(2001) 2374-2377.
-
[4]
[4] D.J. Brown, Quinoxalines:supplement II, in:E.C. Taylor, P. Wipf (Eds.), The Chemistry of Heterocyclic Compounds, vol. 61, John Wiley & Sons, New Jersey, 2004.
-
[5]
[5] S.V. More, M.N.V. Sastry, C.F. Yao, Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water:a simple, proficient and green approach for the synthesis of quinoxalines, Green Chem. 8(2006) 91-95.
-
[6]
[6] H.R. Darabi, S. Mohandessi, K. Aghapoor, F. Mohsenzadeh, A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature, Catal. Commun. 8(2007) 389-392.
-
[7]
[7] A. Hasaninejad, A. Zare, M.A. Zolfigol, M. Shekouhy, Zirconium tetrakis(dodecyl sulfate)[Zr(DS)4] as an efficient lewis acid-surfactant combined catalyst for the synthesis of quinoxaline derivatives in aqueous media, Synth. Commun. 39(2009) 569-579.
-
[8]
[8] A. Dhakshinamoorthy, K. Kanagaraj, K. Pitchumani, Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature, Tetrahedron Lett. 52(2011) 69-73.
-
[9]
[9] C.R. Qi, H.F. Jiang, L.B. Huang, Z.W. Chen, H.J. Chen, DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines, Synthesis (2011) 387-396.
-
[10]
[10] X.Z. Zhang, J.X. Wang, L. Bai, Microwave-assisted synthesis of quinoxalines in PEG-400, Synth. Commun. 41(2011) 2053-2063.
-
[11]
[11] H.M. Bachhav, S.B. Bhagat, V.N. Telvekar, Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent, Tetrahedron Lett. 52(2011) 5697-5701.
-
[12]
[12] C. Zhang, Z.J. Xu, L.R. Zhang, N. Jiao, Et3N-catalyzed oxidative dehydrogenative coupling of α-unsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant, Tetrahedron 68(2012) 5258-5262.
-
[13]
[13] F. Pan, T.M. Chen, J.J. Cao, J.P. Zou, W. Zhang, Ga(ClO4)3-catalyzed synthesis of quinoxalines by cycloaddition of α-hydroxyketones and o-phenylenediamines, Tetrahedron Lett. 53(2012) 2508-2510.
-
[14]
[14] A. Kumbhar, S. Kamble, M. Barge, G. Rashinkar, R. Salunkhe, Brönsted acid hydrotrope combined catalyst for environmentally benign synthesis of quinoxalines and pyrido[2,3-b] pyrazines in aqueous medium, Tetrahedron Lett. 53(2012) 2756-2760.
-
[15]
[15] A.V. Narsaiah, J.K. Kumar, Glycerin and CeCl3·7H2O:a new and efficient recyclable reactionmediumfor thesynthesisofquinoxalines, Synth.Commun.42(2012)883-892.
-
[16]
[16] J.A. Rabo, Unifying principles in zeolite chemistry and catalysis, Catal. Rev.:Sci. Eng. 23(1981) 293-313.
-
[17]
[17] H.S. Nalwa, Handbook of Surfaces and Interfaces of Materials, Academic Press, New York, 2001.
-
[18]
[18] S.M. Baghbanian, N. Rezaei, H. Tashakkorian, Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4 H-chromene derivatives in aqueous media, Green Chem. 15(2013) 3446-3458.
-
[1]
-
-
-
[1]
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
-
[2]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[3]
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
-
[4]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[5]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[6]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[7]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[8]
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
-
[9]
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
-
[10]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[11]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[12]
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
-
[13]
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
-
[14]
Xin He , Feng Liu , Tao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621
-
[15]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[16]
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
-
[17]
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
-
[18]
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
-
[19]
Jing Guo , Zhi-Guo Lu , Rui-Chen Zhao , Bao-Ku Li , Xin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875
-
[20]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(786)
- HTML views(20)