Citation: Seyed Meysam Baghbanian. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives[J]. Chinese Chemical Letters, ;2015, 26(9): 1113-1116. doi: 10.1016/j.cclet.2015.04.037 shu

Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives

  • Corresponding author: Seyed Meysam Baghbanian, 
  • Received Date: 5 March 2015
    Available Online: 23 April 2015

  • In this work, the natural nanozeolite clinoptilolite (Nano CP) was successfully functionalized by propylsulfonic acid and applied as efficient heterogeneous catalyst for the synthesis of quinoxaline derivatives in aqueous media. The nanocatalyst was characterized by various techniques such as CHN, XRD, FT-IR, BET, TGA/DTA, SEM, TEM and TEM-EDS. The results show its applicability as green, reusable and promising catalyst in organic synthesis. It was found that the nanocatalysts could be recycled and reused eight times without significant loss of catalytic activities.
  • 加载中
    1. [1]

      [1] A. Burguete, E. Pontiki, D. Hadjipavlou-Litina, Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues, Bioorg. Med. Chem. Lett. 17(2007) 6439-6443.

    2. [2]

      [2] J.Y. Jaung, Synthesis and halochromism of new quinoxaline fluorescent dyes, Dyes Pigm. 71(2006) 245-250.

    3. [3]

      [3] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C. Tzeng, Synthesis and antibacterial evaluation of certain quinolone derivatives, J. Med. Chem. 44(2001) 2374-2377.

    4. [4]

      [4] D.J. Brown, Quinoxalines:supplement II, in:E.C. Taylor, P. Wipf (Eds.), The Chemistry of Heterocyclic Compounds, vol. 61, John Wiley & Sons, New Jersey, 2004.

    5. [5]

      [5] S.V. More, M.N.V. Sastry, C.F. Yao, Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water:a simple, proficient and green approach for the synthesis of quinoxalines, Green Chem. 8(2006) 91-95.

    6. [6]

      [6] H.R. Darabi, S. Mohandessi, K. Aghapoor, F. Mohsenzadeh, A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature, Catal. Commun. 8(2007) 389-392.

    7. [7]

      [7] A. Hasaninejad, A. Zare, M.A. Zolfigol, M. Shekouhy, Zirconium tetrakis(dodecyl sulfate)[Zr(DS)4] as an efficient lewis acid-surfactant combined catalyst for the synthesis of quinoxaline derivatives in aqueous media, Synth. Commun. 39(2009) 569-579.

    8. [8]

      [8] A. Dhakshinamoorthy, K. Kanagaraj, K. Pitchumani, Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature, Tetrahedron Lett. 52(2011) 69-73.

    9. [9]

      [9] C.R. Qi, H.F. Jiang, L.B. Huang, Z.W. Chen, H.J. Chen, DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines, Synthesis (2011) 387-396.

    10. [10]

      [10] X.Z. Zhang, J.X. Wang, L. Bai, Microwave-assisted synthesis of quinoxalines in PEG-400, Synth. Commun. 41(2011) 2053-2063.

    11. [11]

      [11] H.M. Bachhav, S.B. Bhagat, V.N. Telvekar, Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent, Tetrahedron Lett. 52(2011) 5697-5701.

    12. [12]

      [12] C. Zhang, Z.J. Xu, L.R. Zhang, N. Jiao, Et3N-catalyzed oxidative dehydrogenative coupling of α-unsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant, Tetrahedron 68(2012) 5258-5262.

    13. [13]

      [13] F. Pan, T.M. Chen, J.J. Cao, J.P. Zou, W. Zhang, Ga(ClO4)3-catalyzed synthesis of quinoxalines by cycloaddition of α-hydroxyketones and o-phenylenediamines, Tetrahedron Lett. 53(2012) 2508-2510.

    14. [14]

      [14] A. Kumbhar, S. Kamble, M. Barge, G. Rashinkar, R. Salunkhe, Brönsted acid hydrotrope combined catalyst for environmentally benign synthesis of quinoxalines and pyrido[2,3-b] pyrazines in aqueous medium, Tetrahedron Lett. 53(2012) 2756-2760.

    15. [15]

      [15] A.V. Narsaiah, J.K. Kumar, Glycerin and CeCl3·7H2O:a new and efficient recyclable reactionmediumfor thesynthesisofquinoxalines, Synth.Commun.42(2012)883-892.

    16. [16]

      [16] J.A. Rabo, Unifying principles in zeolite chemistry and catalysis, Catal. Rev.:Sci. Eng. 23(1981) 293-313.

    17. [17]

      [17] H.S. Nalwa, Handbook of Surfaces and Interfaces of Materials, Academic Press, New York, 2001.

    18. [18]

      [18] S.M. Baghbanian, N. Rezaei, H. Tashakkorian, Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4 H-chromene derivatives in aqueous media, Green Chem. 15(2013) 3446-3458.

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    3. [3]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    4. [4]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    5. [5]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    6. [6]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    9. [9]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    10. [10]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    11. [11]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    12. [12]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    15. [15]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    16. [16]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    17. [17]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    18. [18]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    19. [19]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(786)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return