Citation: Hai-Xia Wang, Zhen-Ning Yan, Xiang-Li Wen, Yun-Xia Kang, Shuang-Yan Zhang. A bismuth(III) PVC membrane ion selective electrode based on 5-(3,4,5-trimethoxyphenyl)-4-amino-1,2,4-triazole-3-thiol[J]. Chinese Chemical Letters, ;2015, 26(9): 1147-1149. doi: 10.1016/j.cclet.2015.04.036 shu

A bismuth(III) PVC membrane ion selective electrode based on 5-(3,4,5-trimethoxyphenyl)-4-amino-1,2,4-triazole-3-thiol

  • Corresponding author: Zhen-Ning Yan, 
  • Received Date: 23 January 2015
    Available Online: 23 April 2015

    Fund Project: This work was supported by the Science Foundation of Henan Province (No. 142102310336). (No. 142102310336)

  • The construction, performance characteristics and application of a new bismuth(III) PVC membrane electrode based on 5-(3,4,5-trimethoxyphenyl)-4-amino-1,2,4-triazole-3-thiol are reported in this paper. The designed sensor exhibited a Nernstian response for Bi3+ ion ranging from 5.0×10-7 mol/L to 1.0×10-2 mol/L with a slope of 19.8 mV/decade. The operational pH range of the sensor is 3.0-6.0. The electrode shows a response time of 6 s and can be used for at least five weeks without any considerable divergence in potentials. It exhibits very good selectivity relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. The proposed electrode could be used as an indicator electrode in potentiometric titration of Bi3+ ions with EDTA and in the determination of Bi3+ content in stomach medicine.
  • 加载中
    1. [1]

      [1] Z. Xing, J. Wang, S.C. Zhang, X.R. Zhang, Determination of bismuth in solid samples by hydride generation atomic fluorescence spectrometry with a dielectric barrier discharge atomizer, Talanta 80(2009) 139-142.

    2. [2]

      [2] S. Moyano, R.G. Wuilloud, R.A. Olsina, J.A. Gá squez, L.D. Martinez, On-line preconcentration system for bismuth determination in urine by flow injection hydride generation inductively coupled plasma atomic emission spectrometry, Talanta 54(2001) 211-219.

    3. [3]

      [3] S. Itoh, S. Kaneco, K. Ohta, T. Mizuno, Determination of bismuth in environmental samples with Mg-W cell-electrothermal atomic absorption spectrometry, Anal. Chim. Acta 379(1999) 169-173.

    4. [4]

      [4] R. Ohzeki, T. Kambara, Properties of a membrane electrode based on liquid ion exchanger incorporated in poly(vinyl chloride) and its application to potentiometric titration of bismuth(III), J. Electroanal. Chem. Interface Electrochem. 88(1978) 85-90.

    5. [5]

      [5] R.K. Mahajan, R.K. Puri, G. Bhargava, M.P. Mahajan, 1,3,4-Trisubstituted-2-azetidinone derivatives as novel receptors for bismuth (III) ion-selective electrodes:application in pharmaceutical and glass samples, Anal. Lett. 42(2009) 2444-2459.

    6. [6]

      [6] S.V. Kharitonov, Polymeric membrane ion-selective electrode for determination of bismuth (III) in pharmaceutical substances, J. Pharm. Biomed. Anal. 30(2002) 181-187.

    7. [7]

      [7] Z.N. Yan, S.Q. Wang, H.X. Wang, S.Y. Wu, Bismuth (III) PVC membrane ion selective electrodes based on two compounds:acylhydrazone and thiosemicarbazone with 1,3,4-thiadiazole, Mater. Sci. Eng. C 33(2013) 2562-2568.

    8. [8]

      [8] L. Liu, L. Wang, H.Z. Yin, Y.J. Li, X.W. He, The preparation and application of bismuth (III) ion-selective electrode based on nanoparticles of bismuth sulfide, Anal. Lett. 39(2006) 879-890.

    9. [9]

      [9] D.M.S. Paqhaleh, L. Hashemi, V. Amani, A. Morsali, A.A. Aminjanov, Synthesis of two new nano-structured mercury (II) complexes with 4-methyl-4H-1,2,4-triazole-3-thiol ligand by sonochemical method, Inorg. Chim. Acta 407(2013) 1-6.

    10. [10]

      [10] R.F. Zhang, Q.F. Wang, Q.L. Li, C.L. Ma, Syntheses and characterization of triorganotin (IV) complexes of Schiff base derive from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and 5-amino-1,3,4-thiadiazole-2-thiol with p-phthalaldehyde, Inorg. Chim. Acta 362(2009) 2762-2769.

    11. [11]

      [11] T. George, T.D. Mehta, R. Tahilramani, J. David, P.K. Talwalker, Synthesis of some striazoles with potential analgesic and antiinflammatory activities, J. Med. Chem. 14(1971) 335-338.

    12. [12]

      [12] H.T. Du, H.J. Du, Synthesis and biological activity of 6-(substituted)-3-(3,4,5-trimethoxyphenyl)-1,2,4-triazolo[3,4-b] [1,3,4] thiadiazole, Chin. J. Org. Chem. 30(2010) 137-141.

    13. [13]

      [13] M.B. Gholivand, Y. Mozaffari, PVC-based bis (2-nitrophenyl) disulfide sensor for zinc ions, Talanta 59(2003) 399-407.

    14. [14]

      [14] W. Zhang, L. Jenny, U.E. Spichiger, A comparison of neutral Mg2+-selective ionophores in solvent polymeric membranes:complex stoichiometry and lipophilicity, Anal. Sci. 16(2000) 11-18.

    15. [15]

      [15] E. Bakker, Selectivity of liquid membrane ion-selective electrodes, Electroanalysis 9(1997) 7-12.

    16. [16]

      [16] Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (Technical Report), Pure Appl. Chem. 72(2000) 1851-2082.

    17. [17]

      [17] Y. Umezawa, K. Umezawa, H. Sato, Selectivity coefficients for ion-selective electrodes:recommended methods for reporting KA,Bpot values (IUPAC technical report), Pure Appl. Chem. 67(1995) 507-518.

    18. [18]

      [18] M.F. de Souza Teixeira, A.Z. Pinto, O. Fatibello-Filho, Ion-selective electrode for bismuth (III) in ethylenediamintetraacetate medium, Talanta 45(1997) 249-255.

    19. [19]

      [19] D. Li, T. Sun, The development and application of the bismuth ion-modified carbon paste electrode, Phys. Testing Chem. Anal. Part B:Chem. Anal. 42(2006) 359-360.

  • 加载中
    1. [1]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    2. [2]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    3. [3]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    4. [4]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    5. [5]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    6. [6]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    9. [9]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    10. [10]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    11. [11]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    12. [12]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    13. [13]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    14. [14]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    15. [15]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    16. [16]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    19. [19]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    20. [20]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return