Citation:
Yi-Rou Jiang, Fu-Hua Sun, Xiao-Yong Zhou, Wei-Bo Kong, Xing-Yi Xie. Water dispersible hydroxyapatite nanoparticles functionalized by a family of aminoalkyl phosphates[J]. Chinese Chemical Letters,
;2015, 26(9): 1121-1128.
doi:
10.1016/j.cclet.2015.04.035
-
A series of aminoalkyl phosphates (AAP-n, with carbon number n ranging from 2 to 6) are used as surface modifiers to prepare hydroxyapatite hydrocolloids. The resulting nanoparticles (Cn-HA) possess a coreshell structure where an ionized layer of calcium-(AAP-n) complex [+H3N-(CH2)n-OPO3Ca] encapsulates each hydroxyapatite core. Long-term colloidal stability is achieved due to the electrostatic repulsion among the suspending particles. The incorporation of AAP-n results in a preferential crystal growth along c-axis, showing an increasing aspect ratio of particles from C2-HA to C6-HA. Preliminary cell culture using osteoblast-like MG63 cells shows no cytotoxicity associated with the as-prepared Cn-HA particles. The functional amino groups around the nanoparticles could be used to graft various organic chains to prepare homogeneous HA/polymer composites as bone grafting materials.
-
Keywords:
- Hydroxyapatite,
- Hydrocolloid,
- Aminoalkyl phosphate,
- Cytotoxicity
-
-
-
[1]
[1] R.G.T. Geesink, N.H.M. Hoefnagels, Six-year results of hydroxyapatite-coated total hip replacement, J. Bone Joint Surg. (Br.) 77(1995) 534-547.
-
[2]
[2] D.G. Guo, K.W. Xu, X.Y. Zhao, Y. Han, Development of a strontium-containing hydroxyapatite bone cement, Biomaterials 26(2005) 4073-4083.
-
[3]
[3] H.J. Qiu, J. Yang, P. Kodali, J. Koh, G.A. Ameer, A citric acid-based hydroxyapatite composite for orthopedic implants, Biomaterials 27(2006) 5845-5854.
-
[4]
[4] M.H. Fathi, V. Mortazavi, S.R. Esfahani, Bioactivity evaluation of synthetic nanocrystalline hydroxyapatite, Dent. Res. J. 5(2008) 81-87.
-
[5]
[5] L.W. Lin, K.L. Chow, Y. Leng, Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells, J. Biomed. Mater. Res. A 89A (2009) 326-335.
-
[6]
[6] W. Zhi, C. Zhang, K. Duan, et al., A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts, J. Biomed. Mater. Res. A 102(2014) 2491-2501.
-
[7]
[7] X.M. Deng, J.Y. Hao, C.S. Wang, Preparation and mechanical properties of nanocomposites of poly (D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals, Biomaterials 22(2001) 2867-2873.
-
[8]
[8] D.A. Wahl, J.T. Czernuszka, Collagen-hydroxyapatite composites for hard tissue repair, Eur. Cells Mater. 11(2006) 43-56.
-
[9]
[9] J.B. Luo, S.X. Qiu, Y.L. Wang, R.H. Lai, X.Y. Xie, Preparation and physicochemical properties of hydroxyapatite/polyurethane nanocomposites, Chin. J. Polym. Sci. 32(2014) 467-475.
-
[10]
[10] M.Sˇupová, Problem of hydroxyapatite dispersion in polymer matrices:a review, J. Mater. Sci.:Mater. Med. 20(2009) 1201-1213.
-
[11]
[11] H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa, Surface modification of calcium hydroxyapatite with hexyl and decyl phosphates, Colloid Surf. A:Physicochem. Eng. Asp. 125(1997) 53-62.
-
[12]
[12] Y.B. Li, W.J. Weng, Surface modification of hydroxyapatite by stearic acid:characterization and in vitro behaviors, J. Mater. Sci.:Mater. Med. 19(2008) 19-25.
-
[13]
[13] Z.K. Hong, P.B. Zhang, C.L. He, et al., Nano-composite of poly (L-lactide) and surface grafted hydroxyapatite:mechanical properties and biocompatibility, Biomaterials 26(2005) 6296-6304.
-
[14]
[14] Y. Wang, J. Dai, Q.C. Zhang, Y. Xiao, M.D. Lang, Improved mechanical properties of hydroxyapatite/poly(ε-caprolactone) scaffolds by surface modification of hydroxyapatite, Appl. Surf. Sci. 256(2010) 6107-6112.
-
[15]
[15] R. Gonzalez-McQuire, J.-Y. Chane-Ching, E. Vignaud, A. Lebugle, S. Mann, Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, J. Mater. Chem. 14(2004) 2277-2281.
-
[16]
[16] J.Y. Chane-Ching, A. Lebugle, I. Rousselot, A. Pourpoint, F. Pellé, Colloidal synthesis and characterization of monocrystalline apatite nanophosphors, J. Mater. Chem. 17(2007) 2904-2913.
-
[17]
[17] A. Bouladjine, A. Al-Kattan, P. Dufour, C. Drouet, New advances in nanocrystalline apatite colloids intended for cellular drug delivery, Langmuir25(2009) 12256-12265.
-
[18]
[18] C.C. Li, L.P. Zhao, J.J. Han, et al., Synthesis of citrate-stabilized hydrocolloids of hydroxyapatite through a novel two-stage method:a possible aggregates-breakdown mechanism of colloid formation, J. Colloid Interface Sci. 360(2011) 341-349.
-
[19]
[19] X.W. Huang, X. Liu, S.S. Liu, et al., Biomineralization regulation by nano-sized features in silk fibroin proteins:synthesis of water-dispersible nano-hydroxyapatite, J. Biomed. Mater. Res. B:Appl. Biomater. 102(2014) 1720-1729.
-
[20]
[20] X.Y. Zhou, Y.R. Jiang, C.C. Li, X.Y. Xie, Synthesis of poly (ethylene glycol)-functionalized hydroxyapatite organic colloid intended for nanocomposites, Chin. Chem. Lett. 24(2013) 647-650.
-
[21]
[21] J.B. Luo, S.X. Qiu, X.Y. Zhou, et al., In situ grafting polyethylene glycol chains onto amorphous calcium phosphate nanoparticles to improve the storage stability and organic solvent redispersibility, Colloids Surf. A:Physicochem. Eng. Asp. 444(2014) 81-88.
-
[22]
[22] W.B. Kong, X.Y. Zhou, Y. Yang, X.Y. Xie, A facile synthesis of ω-aminoalkyl ammonium hydrogen phosphates, Chin. Chem. Lett. 23(2012) 923-926.
-
[23]
[23] K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique, Bull. Mater. Sci. 32(2009) 465-470.
-
[24]
[24] E.S. Baginski, P.P. Foà, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and totalphosphate in biologic materials, Clin.Chem. 13(1967) 326-332.
-
[25]
[25] J. Christoffersen, M.R. Christoffersen, Kinetics of dissolution of calcium hydroxyapatite:IV. The effect of some biologically important inhibitors, J. Cryst. Growth 53(1981) 42-54.
-
[26]
[26] P. Bissinger, O. Kumberger, A. Schier, Preparation and crystal structures of 2-aminoethyl phosphate complexes of magnesium, calcium, and zinc, Chem. Ber. 124(1991) 509-513.
-
[27]
[27] M.I. Kay, R.A. Young, A.S. Posner, Crystal structure of hydroxyapatite, Nature 204(1964) 1050-1052.
-
[28]
[28] W.G. Jiang, H.H.Pan,Y.R. Cai, et al., Atomicforcemicroscopy revealshydroxyapatitecitrate interfacial structure at the atomic level, Langmuir 24(2008) 12446-12451.
-
[29]
[29] R.H. Lai, P.J. Dong, Y.L. Wang, J.B. Luo, Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate, Chin. Chem. Lett. 25(2014) 295-298.
-
[30]
[30] L. Rothfield, A. Finkelstein, Membrane biochemistry, Annu. Rev. Biochem. 37(1968) 463-495.
-
[31]
[31] O.S. Lee, Y.H. Byon, B.S. Lee, et al., Method for preparing of 3-aminopropane phosphoric acid, US 5723645, 1998.
-
[1]
-
-
-
[1]
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
-
[2]
Chuan Li , Yangyang Han , Yanan Zhai , Ke Li , Xingzhong Liu , Zhuan Zhang , Cai Jia , Yongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019
-
[3]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[4]
Rui Li , Ruijie Lu , Libin Yang , Jianwen Li , Zige Guo , Qiquan Yan , Mengjun Li , Yazhuo Ni , Keying Chen , Yaoyang Li , Bo Xu , Mengzhen Cui , Zhan Li , Zhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242
-
[5]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[6]
Lingna Wang , Chenxin Tian , Ruobin Dai , Zhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356
-
[7]
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
-
[8]
Mengjia Luo , Yi Qiu , Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(820)
- HTML views(9)