Citation: Xue-Qing Han, Qun-Feng Zhang, Feng Feng, Chun-Shan Lu, Lei Ma, Xiao-Nian Li. Selective hydrogenation of dimethyl maleate to tetrahydrofuran over Cu/SiO2 catalyst: Effect of Cu+ on the catalytic performance[J]. Chinese Chemical Letters, ;2015, 26(9): 1150-1154. doi: 10.1016/j.cclet.2015.04.031 shu

Selective hydrogenation of dimethyl maleate to tetrahydrofuran over Cu/SiO2 catalyst: Effect of Cu+ on the catalytic performance

  • Corresponding author: Qun-Feng Zhang, 
  • Received Date: 3 March 2015
    Available Online: 14 April 2015

    Fund Project: Funding for the present study from the National Key Basic Research Program of China (973 Program, No. 2011CB710800) (973 Program, No. 2011CB710800)National Natural Science Foundation of China (No. NSFC- 21406199). (No. NSFC- 21406199)

  • Cu/SiO2 catalysts prepared by differentmethods have been investigated focusing on the influence of Cu+ on the catalytic performance. The composition, structure and copper valence state were characterized by means of BET, XRD, XPS, FTIR, N2O-titration. It was found that the Cu/SiO2 prepared by ammoniaevaporation (AE) method had much higher TOF value than that prepared by wetness-impregnation (WI) with the same THF selectivity. The higher TOF value was attributed to the coexistence of Cu+ and Cu0 species in the activated AE-Cu/SiO2, while only Cu0 species existing in the activated WI-Cu/SiO2. Researches suggest that Cu+ can adsorb and polarize the C=O bond of DMM. It is concluded that Cu0 could be the main active site and the synergistic effect between Cu0 and Cu+ could contribute to hydrogenation of DMM to THF.
  • 加载中
    1. [1]

      [1] S.P. Müller, M. Kucher, C. Ohlinger, B. Kraushaar-Czarnetzki, Extrusion of Cu/ZnO catalysts for the single-stage gas-phase processing of dimethyl maleate to tetrahydrofuran, J. Catal. 218(2003) 419-426.

    2. [2]

      [2] T. Haas, B. Jaeger, R. Weber, S.F. Mitchell, C.F. King, New diol processes:1,3-propanediol and 1,4-butanediol, Appl. Catal. A. 280(2005) 83-88.

    3. [3]

      [3] W. Reppe, E. Keyssner, Production of alkinols, US Patent2232867,1941.

    4. [4]

      [4] C. Ohlinger, B.Z. Czarnetzki, Improved processing stability in the hydrogenation of dimethyl maleate to γ-butyrolactone 1,4-butanediol and tetrahydrofuran, Chem. Eng. Sci. 58(2003) 1453-1461.

    5. [5]

      [5] G. Centi, F. Trifiro, J.R. Ebner, et al., Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide, Chem. Rev. 88(1988) 55-80.

    6. [6]

      [6] L.F. Chen, P.J. Guo, M.H. Qiao, et al., Cu/SiO2 catalysts prepared by the ammoniaevaporation method:texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J Catal. 257(2008) 172-180.

    7. [7]

      [7] S.R. Wang, L.J. Zhu, Y.Y. Zhu, X.L. Ge, X.B. Li, Effects of ethanol on the in situ synthesized Cu/SiO2 catalyst:texture, structure, and the catalytic performance in hydrogenation dimethyl oxalate to ethylene glycol, Chin. Chem. Lett. 22(2011) 362-365.

    8. [8]

      [8] L. Lin, P.B. Pan, Z.F. Zhou, et al., Cu/SiO2 catalysts prepared by the sol-gel method for hydrogenation of dimethyl oxalate to ethylene glycol, Chin. J. Chem. 32(2011) 957-969.

    9. [9]

      [9] D.S. Brands, E.K. Poels, A. Bliek, Ester hydrogenolysis over promoted Cu/SiO2 catalysts, Appl. Catal. A. 184(1999) 279-289.

    10. [10]

      [10] Y.N. Wang, X.P. Duan, J.W. Zheng, et al., Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold, Catal. Sci. Technol. 2(2012) 1637-1639.

    11. [11]

      [11] Y. Huang, H. Ariga, X.L. Zheng, et al., Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 307(2013) 74-83.

    12. [12]

      [12] C. Wen, A.Y. Yin, Y.Y. Cui, et al., Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate, Appl. Catal. A 458(2013) 82-89.

    13. [13]

      [13] C.S. Chen, C.C. Chen, C.T. Chen, et al., Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun. 47(2011) 2288-2290.

    14. [14]

      [14] J.L. Gong, H.R. Yue, Y.J. Zhao, et al., Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134(2012) 13922-13925.

    15. [15]

      [15] F. Li, C.S. Lu, X.N. Li, The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol, Chin. Chem. Lett. 25(2014) 1461-1465.

    16. [16]

      [16] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol:new insights on the synergetic effect between Cu0 and Cu+, J. Phys. Chem. C 113(2009) 11003-11013.

    17. [17]

      [17] S. Sato, R. Takahashi, T. Sodesawa, K.I. Yuma, Y. Obata, Distinction between surface and bulk oxidation of Cu through N2O decomposition, J. Catal. 196(2000) 195-199.

    18. [18]

      [18] T. Toupance, M. Kermarec, J.F. Lambert, et al., Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption, J. Phys. Chem. B 106(2002) 2277-2286.

    19. [19]

      [19] K. Hadjiivanov, H. Knözinger, FTIR study of CO and NO adsorption and coadsorption on a Cu/SiO2 catalyst:probing the oxidation state of copper, Phys. Chem. Chem. Phys. 3(2001) 1132-1137.

    20. [20]

      [20] T. Tsoncheva, Tz. Venkov, M. Dimitrov, C. Minchev, K. Hadjiivanov, Coppermodified mesoporous MCM-41 silica:FTIR and catalytic study, J. Mol. Catal. A. 209(2004) 125-134.

    21. [21]

      [21] X.L. Zheng, H.Q. Lin, J.W. Zheng, X.P. Duan, Y.Z. Yuan, Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, ACS Catal. 3(2013) 2738-2749.

    22. [22]

      [22] S. Zhao, H.R. Yue, Y.J. Zhao, et al., Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2:enhanced stability with boron dopant, J. Catal. 297(2013) 142-150.

    23. [23]

      [23] G.G. Jernigan, G.A. Somorjai, Carbon monoxide oxidation over three different oxidation states of copper:metallic copper, copper (I) oxide, and copper (II) oxide-a surface science and kinetic study, J Catal. 147(1994) 567-577.

    24. [24]

      [24] Z.W. Huang, F. Cui, H.X. Kang, et al., Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method:a simple but efficient and stable catalyst for glycerol hydrogenolysis, Chem. Mater. 20(2008) 5090-5099.

    25. [25]

      [25] L.F. Chen, P.J. Guo, L.J. Zhu, et al., Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol, Appl. Catal. A. 356(2009) 129-136.

    26. [26]

      [26] H.R. Yue, X.B. Ma, J.L. Gong, An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol, Acc. Chem. Res. 47(2014) 1483-1492.

    27. [27]

      [27] B. Zhang, S.G. Hui, S.H. Zhang, et al., Effect of copper loading on texture, structure and catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, J. Nat. Gas. Chem. 21(2012) 563-570.

  • 加载中
    1. [1]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    2. [2]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    3. [3]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    4. [4]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    5. [5]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    6. [6]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    7. [7]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    8. [8]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    9. [9]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    10. [10]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    11. [11]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    12. [12]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    13. [13]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    14. [14]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    15. [15]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    16. [16]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    17. [17]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    18. [18]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    19. [19]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    20. [20]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

Metrics
  • PDF Downloads(0)
  • Abstract views(881)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return