Citation:
Hui Tang, Juan Wu, Wen Zhang, Lei Zhao, Ya-Hui Zhang, Cheng-Wu Shen. Design, synthesis and biological evaluation of novel non-azole derivatives as potential antifungal agents[J]. Chinese Chemical Letters,
;2015, 26(9): 1161-1164.
doi:
10.1016/j.cclet.2015.04.030
-
A series of 3-substituted quinazolinones, 2-substituted quinoxalines and 2-substituted benzopyrans were synthesized and evaluated for their antifungal activity in vitro. The new compounds revealed excellent in vitro antifungal activity with broad spectrum. The structure-activity relationships (SARs) of the derivatives were analyzed. Compound 9A2 exhibits better antifungal activity against 5 tested fungi in vitro than fluconazole, especially against Trichophyton rubrum and Microsporum gypseum. This study provides a series of novel lead compounds for the development of non-azole antifungal agents.
-
-
-
[1]
[1] J.J. Castón-Osorio, A. Rivero, J. Torre-Cisneros, Epidemiology of invasive fungal infection, Int. J. Antimicrob. Agents 32(2008) S103-S109.
-
[2]
[2] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents,, Chin. Chem. Lett. 25(2014) 1033-1038.
-
[3]
[3] H.A. Gallis, R.H. Drew, W.W. Pickard, Amphotericin B:30 years of clinical experience, Clin. Infect. Dis. 12(1990) 308-329.
-
[4]
[4] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12(1999) 40-79.
-
[5]
[5] D.W. Denning, Echinocandins:a new class of antifungal, J. Antimicrob. Chemother. 49(2002) 889-891.
-
[6]
[6] I.A. Casalinuovo, P. Di Francesco, E. Garaci, Fluconazole resistance in Candida albicans:a review of mechanisms, Eur. Rev. Med. Pharmacol. 8(2004) 69-77.
-
[7]
[7] H.L. Hoffman, E.J. Ernst, M.E. Klepser, Novel triazole antifungal agents, Expert Opin. Invest. Drugs 9(2000) 593-605.
-
[8]
[8] S.P. Zhu, W.Y. Wang, K. Fang, et al., Design, synthesis and antifungal activity of carbazole derivatives, Chin. Chem. Lett. 25(2014) 229-233.
-
[9]
[9] A. Lupetti, R. Danesi, M. Campa, M.D. Tacca, S. Kelly, Molecular basis of resistance to azole antifungals, Trends Mol. Med. 8(2002) 76-81.
-
[10]
[10] H.T. Ji, W.N. Zhang, Y.J. Zhou, et al., A three-dimensional model of lanosterol 14 a-demethylase of Candida albicans and its interaction with azole antifungals, J. Med. Chem. 43(2000) 2493-2505.
-
[11]
[11] C.Q. Sheng, Z.Y. Miao, H.T. Ji, et al., Three-dimensional model of lanosterol 14 a-demethylase from Cryptococcus neoformans:active-site characterization and insights into azole binding, Antimicrob. Agents Chemother. 53(2009) 3487-3495.
-
[12]
[12] C.Q. Sheng, W.Y. Wang, X.Y. Che, et al., Improved model of lanosterol 14 a-demethylase by ligand-supported homology modeling:validation by virtual screening and azole optimization, Curr. Med. Chem. 5(2010) 390-397.
-
[13]
[13] B. Yao, H.T. Ji, Y.B. Cao, et al., Synthesis and antifungal activities of novel 2-aminotetralin derivatives, J. Med. Chem. 50(2007) 5293-5300.
-
[14]
[14] H. Tang, Y.J. Zhou, Y.W. Li, et al., Design, synthesis and antifungal activities in vitro of novel tetralin compounds, Chin. Chem. Lett. 19(2008) 264-268.
-
[15]
[15] J. Zhu, J.G. Lu, Y.J. Zhou, et al., Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14 a-demethylase (CYP51) of fungi, Bioorg. Med. Chem. Lett. 16(2006) 5285-5289.
-
[16]
[16] W.W. Ning, J. Zhu, C.H. Zheng, et al., Fragment-based design of novel quinazolinon derivatives as human acrosin inhibitors, Chem. Biol. Drug Des. 81(2013) 437-441.
-
[17]
[17] C. Pá rká nyi, D.S. Schmidt, Synthesis of 5-chloro-2-methyl-3-(5-methylthiazol-2-yl)-4(3H)-quinazolinone and related compounds with potential biological activity, J Heterocycl. Chem. 37(2000) 725-729.
-
[18]
[18] I.K. Kostakis, A. Elomn, E. Seguin, M. Ianneli, T. Besson, Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide, Tetrahedron Lett. 48(2007) 6609-6613.
-
[19]
[19] M. Fridé n-Saxin, N. Pemberton, K.D.S. Andersson, et al., Synthesis of 2-alkylsubstituted chromone derivatives using microwave irradiation, J. Org. Chem. 74(2009) 2755-2759.
-
[20]
[20] M. Fridé n-Saxin, T. Seifert, M.R. Landergren, et al., Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors, J. Med. Chem. 55(2012) 7104-7113.
-
[21]
[21] N.L. Maidwell, M.R. Rezai, C.A. Roeschlaub, P.G. Sammes, On the development of NAD(P)H-sensitive fluorescent probes, J. Chem. Soc., Perkin Trans. 1(2000) 1541-1546.
-
[22]
[22] S.E. Page, A. Flood, K.C. Gordon, Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium (I) complexes with bridged polypyridyl ligands, J. Chem. Soc., Dalton Trans. 6(2002) 1180-1187.
-
[23]
[23] M.G. Ponizovsky, A.M. Boguslavsky, M.I. Kodess, V.N. Charushin, O.N. Chupakhin, Synthesis of fused quinoxalines, Mendeleev Commun. 12(2002) 68-70.
-
[24]
[24] National Committee for Clinical Laboratory Standards, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts:Approved standard, Document M27-A2, 2nd ed., National Committee for Clinical Laboratory Standards, Wayne, 2002.
-
[25]
[25] I.I. Insight, Molecular Simulation Inc., 9685 Scranton Road, San Diego, CA 92121-3752, 2000, p. 1999.
-
[1]
-
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
-
[3]
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462
-
[4]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[5]
Mianling Yang , Meehyein Kim , Peng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455
-
[6]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[7]
Yanye Fan , Jingjing Chen , Bichun Chen , Jinyu Bai , Bowen Yang , Feng Liang , Lijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075
-
[8]
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
-
[9]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[10]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[11]
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
-
[12]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[13]
Yun-Feng Liu , Hui-Fang Du , Ya-Hui Zhang , Zhi-Qin Liu , Xiao-Qian Qi , Du-Qiang Luo , Fei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858
-
[14]
Xingyu Chen , Sihui Zhuang , Weiyao Yan , Zhengli Zeng , Jianguo Feng , Hongen Cao , Lei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635
-
[15]
Yueying Yang , Huiru Xie , Xinbo Yu , Yang Liu , Hui Wang , Hua Li , Lixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570
-
[16]
Shushan Mo , Zhaoshuo Wang , Dandan Ding , Zhengzheng Yan , Yunlu Dai , Jinchao Zhang , Huifang Liu , Tianjiao Liang , Jianfei Tong , Zhenhua Li , Xueyi Wang . The synthesis and evaluation of novel BPA derivatives for enhanced blood-brain barrier penetration and boron neutron capture therapy. Chinese Chemical Letters, 2025, 36(5): 110190-. doi: 10.1016/j.cclet.2024.110190
-
[17]
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
-
[18]
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
-
[19]
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
-
[20]
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(765)
- HTML views(9)