Citation: Hui Tang, Juan Wu, Wen Zhang, Lei Zhao, Ya-Hui Zhang, Cheng-Wu Shen. Design, synthesis and biological evaluation of novel non-azole derivatives as potential antifungal agents[J]. Chinese Chemical Letters, ;2015, 26(9): 1161-1164. doi: 10.1016/j.cclet.2015.04.030 shu

Design, synthesis and biological evaluation of novel non-azole derivatives as potential antifungal agents

  • Corresponding author: Cheng-Wu Shen, 
  • Received Date: 5 January 2015
    Available Online: 3 April 2015

    Fund Project: the Foundation of Sichuan Provincial Health Department (No. 110480). (No. ZR2012HQ026)

  • A series of 3-substituted quinazolinones, 2-substituted quinoxalines and 2-substituted benzopyrans were synthesized and evaluated for their antifungal activity in vitro. The new compounds revealed excellent in vitro antifungal activity with broad spectrum. The structure-activity relationships (SARs) of the derivatives were analyzed. Compound 9A2 exhibits better antifungal activity against 5 tested fungi in vitro than fluconazole, especially against Trichophyton rubrum and Microsporum gypseum. This study provides a series of novel lead compounds for the development of non-azole antifungal agents.
  • 加载中
    1. [1]

      [1] J.J. Castón-Osorio, A. Rivero, J. Torre-Cisneros, Epidemiology of invasive fungal infection, Int. J. Antimicrob. Agents 32(2008) S103-S109.

    2. [2]

      [2] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents,, Chin. Chem. Lett. 25(2014) 1033-1038.

    3. [3]

      [3] H.A. Gallis, R.H. Drew, W.W. Pickard, Amphotericin B:30 years of clinical experience, Clin. Infect. Dis. 12(1990) 308-329.

    4. [4]

      [4] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12(1999) 40-79.

    5. [5]

      [5] D.W. Denning, Echinocandins:a new class of antifungal, J. Antimicrob. Chemother. 49(2002) 889-891.

    6. [6]

      [6] I.A. Casalinuovo, P. Di Francesco, E. Garaci, Fluconazole resistance in Candida albicans:a review of mechanisms, Eur. Rev. Med. Pharmacol. 8(2004) 69-77.

    7. [7]

      [7] H.L. Hoffman, E.J. Ernst, M.E. Klepser, Novel triazole antifungal agents, Expert Opin. Invest. Drugs 9(2000) 593-605.

    8. [8]

      [8] S.P. Zhu, W.Y. Wang, K. Fang, et al., Design, synthesis and antifungal activity of carbazole derivatives, Chin. Chem. Lett. 25(2014) 229-233.

    9. [9]

      [9] A. Lupetti, R. Danesi, M. Campa, M.D. Tacca, S. Kelly, Molecular basis of resistance to azole antifungals, Trends Mol. Med. 8(2002) 76-81.

    10. [10]

      [10] H.T. Ji, W.N. Zhang, Y.J. Zhou, et al., A three-dimensional model of lanosterol 14 a-demethylase of Candida albicans and its interaction with azole antifungals, J. Med. Chem. 43(2000) 2493-2505.

    11. [11]

      [11] C.Q. Sheng, Z.Y. Miao, H.T. Ji, et al., Three-dimensional model of lanosterol 14 a-demethylase from Cryptococcus neoformans:active-site characterization and insights into azole binding, Antimicrob. Agents Chemother. 53(2009) 3487-3495.

    12. [12]

      [12] C.Q. Sheng, W.Y. Wang, X.Y. Che, et al., Improved model of lanosterol 14 a-demethylase by ligand-supported homology modeling:validation by virtual screening and azole optimization, Curr. Med. Chem. 5(2010) 390-397.

    13. [13]

      [13] B. Yao, H.T. Ji, Y.B. Cao, et al., Synthesis and antifungal activities of novel 2-aminotetralin derivatives, J. Med. Chem. 50(2007) 5293-5300.

    14. [14]

      [14] H. Tang, Y.J. Zhou, Y.W. Li, et al., Design, synthesis and antifungal activities in vitro of novel tetralin compounds, Chin. Chem. Lett. 19(2008) 264-268.

    15. [15]

      [15] J. Zhu, J.G. Lu, Y.J. Zhou, et al., Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14 a-demethylase (CYP51) of fungi, Bioorg. Med. Chem. Lett. 16(2006) 5285-5289.

    16. [16]

      [16] W.W. Ning, J. Zhu, C.H. Zheng, et al., Fragment-based design of novel quinazolinon derivatives as human acrosin inhibitors, Chem. Biol. Drug Des. 81(2013) 437-441.

    17. [17]

      [17] C. Pá rká nyi, D.S. Schmidt, Synthesis of 5-chloro-2-methyl-3-(5-methylthiazol-2-yl)-4(3H)-quinazolinone and related compounds with potential biological activity, J Heterocycl. Chem. 37(2000) 725-729.

    18. [18]

      [18] I.K. Kostakis, A. Elomn, E. Seguin, M. Ianneli, T. Besson, Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide, Tetrahedron Lett. 48(2007) 6609-6613.

    19. [19]

      [19] M. Fridé n-Saxin, N. Pemberton, K.D.S. Andersson, et al., Synthesis of 2-alkylsubstituted chromone derivatives using microwave irradiation, J. Org. Chem. 74(2009) 2755-2759.

    20. [20]

      [20] M. Fridé n-Saxin, T. Seifert, M.R. Landergren, et al., Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors, J. Med. Chem. 55(2012) 7104-7113.

    21. [21]

      [21] N.L. Maidwell, M.R. Rezai, C.A. Roeschlaub, P.G. Sammes, On the development of NAD(P)H-sensitive fluorescent probes, J. Chem. Soc., Perkin Trans. 1(2000) 1541-1546.

    22. [22]

      [22] S.E. Page, A. Flood, K.C. Gordon, Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium (I) complexes with bridged polypyridyl ligands, J. Chem. Soc., Dalton Trans. 6(2002) 1180-1187.

    23. [23]

      [23] M.G. Ponizovsky, A.M. Boguslavsky, M.I. Kodess, V.N. Charushin, O.N. Chupakhin, Synthesis of fused quinoxalines, Mendeleev Commun. 12(2002) 68-70.

    24. [24]

      [24] National Committee for Clinical Laboratory Standards, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts:Approved standard, Document M27-A2, 2nd ed., National Committee for Clinical Laboratory Standards, Wayne, 2002.

    25. [25]

      [25] I.I. Insight, Molecular Simulation Inc., 9685 Scranton Road, San Diego, CA 92121-3752, 2000, p. 1999.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    3. [3]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    4. [4]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    5. [5]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    8. [8]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    9. [9]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    12. [12]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    13. [13]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    14. [14]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    15. [15]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    16. [16]

      Shushan MoZhaoshuo WangDandan DingZhengzheng YanYunlu DaiJinchao ZhangHuifang LiuTianjiao LiangJianfei TongZhenhua LiXueyi Wang . The synthesis and evaluation of novel BPA derivatives for enhanced blood-brain barrier penetration and boron neutron capture therapy. Chinese Chemical Letters, 2025, 36(5): 110190-. doi: 10.1016/j.cclet.2024.110190

    17. [17]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    18. [18]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    19. [19]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    20. [20]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

Metrics
  • PDF Downloads(0)
  • Abstract views(765)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return