Citation: Jing Lai, Xian-Sheng Ke, Juan Tang, Jun-Long Zhang. Tris(Znsalen) cryptand minimizes Znsalen aggregation arising from intermolecular Zn···O interaction[J]. Chinese Chemical Letters, ;2015, 26(8): 937-941. doi: 10.1016/j.cclet.2015.04.023 shu

Tris(Znsalen) cryptand minimizes Znsalen aggregation arising from intermolecular Zn···O interaction

  • Corresponding author: Jun-Long Zhang, 
  • Received Date: 5 February 2015
    Available Online: 1 April 2015

    Fund Project: This project was supported by the National Scientific Foundation of China (No. 20971007) (No. 20971007)National Key Basic Research Support Foundation of China (NKBRSFC) (Nos. 2013CB933402, 2015CB856300). (NKBRSFC)

  • Exploring the factors to control Znsalen aggregation is of importance to design functional materials in catalysis, optical materials and biological imaging. In this work, we synthesized and characterized four cryptand type triZnsalen complexes and found that cryptand structure could efficiently minimize intermolecular Zn···O interaction. More importantly, encapsulated by PLGA nanoparticles, cryptand triZnsalen 1 displayed visible intracellular fluorescence whereas monomeric Znsalen 5 could not. These results provide a new access to design new luminescent materials with the potential application in optics and biological studies.
  • 加载中
    1. [1]

      [1] S.J. Wezenberg, A.W. Kleij, Material applications for salen frameworks, Angew. Chem. Int. Ed. 47 (2008) 2354-2364.

    2. [2]

      [2] (a) T. Ueno, T. Koshiyama, M. Ohashi, et al., Coordinated design of cofactor and active site structures in development of new protein catalysts, J. Am. Chem. Soc. 127 (2005) 6556-6562; (b) P.F. Wang, Z.R. Hong, Z.Y. Xie, et al., A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices, Chem. Commun. (2003) 1664-1665; (c) L. Rigamonti, F. Demartin, A. Forni, S. Righetto, A. Pasini, Copper(II) complexes of salen analogues with two differently substituted (push-pull) salicylaldehyde moieties. a study on the modulation of electronic asymmetry and nonlinear optical properties, Inorg. Chem. 45 (2006) 10976-10989.

    3. [3]

      [3] (a) S. Di Bella, I. Fragala, Two-dimensional characteristics of the second-order nonlinear optical response in dipolar donor-acceptor coordination complexes, New J. Chem. 26 (2002) 285-290; (b) J.L. Zhang, D.K. Garner, L. Liang, D.A. Barrios, Y. Lu, Noncovalent modulation of pH-dependent reactivity of a Mn-salen cofactor in myoglobin with hydrogen peroxide, Chem. Eur. J. 15 (2009) 7481-7489; (c) J.R. Carey, S.K. Ma, T.D. Pfister, et al., A site-selective dual anchoring strategy for artificial metalloprotein design, J. Am. Chem. Soc. 126 (2004) 10812-10813.

    4. [4]

      [4] C.R. Bhattacharjee, G. Das, P. Mondal, S.K. Prasad, D.S.S. Rao, Novel green light emitting nondiscoid liquid crystalline zinc(II) Schiff-base complexes, Eur. J. Inorg. Chem. 2011 (2011) 1418-1424.

    5. [5]

      [5] G.F. Qi, Z.Y. Yang, B.D. Wang, Synthesis, characterization and DNA-binding properties of zinc(II) and nickel(II) Schiff base complexes, Transit. Met. Chem. 32 (2007) 233-239.

    6. [6]

      [6] (a) J. Jing, J.L. Zhang, Combining myeloperoxidase (MPO) with fluorogenic ZnSalen to detect lysosomal hydrogen peroxide in live cells, Chem. Sci. 4 (2013) 2947-2952; (b) J.J. Chen, J. Jing, H. Chang, et al., A sensitive and quantitative autolysosome probe for detecting autophagic activity in live and prestained fixed cells, Autophagy 9 (2013) 894-904.

    7. [7]

      [7] Y. Hai, J.J. Chen, P. Zhao, et al., Luminescent zinc salen complexes as single and two-photon fluorescence subcellular imaging probes, Chem. Commun. 47 (2011) 2435-2437.

    8. [8]

      [8] (a) J. Jing, J. Tang, D. Xie, et al., Design of luminescent ZnSalen for molecular imaging, Sci. Sin. Chim. 44 (2014) 191-203; (b) Y.B. Cai, J. Zhan, Y. Hai, J.L. Zhang, Molecular assembly directed by metal-aromatic interactions: control of the aggregation and photophysical properties of Zn-salen complexes by aromatic mercuration, Chem. Eur. J. 18 (2012) 4242-4249; (c) J. Tang, Y.B. Cai, J. Jing, J.L. Zhang, Unravelling the correlation betweenmetal induced aggregation and cellular uptake/subcellular localization of Znsalen: an overlooked rule for design of luminescent metal probes, Chem. Sci. 6 (2015) 2389-2397.

    9. [9]

      [9] S.S. Sun, C.L. Stern, S.T. Nguyen, J.T. Hupp, Directed assembly of transition-metalcoordinated molecular loops and squares from salen-type components. Examples of metalation-controlled structural conversion, J. Am. Chem. Soc. 126 (2004) 6314-6326.

    10. [10]

      [10] S. Akine, T. Taniguchi, T. Nabeshima, Helical metallohost-guest complexes via site-selective transmetalation of homotrinuclear complexes, J. Am. Chem. Soc. 128 (2006) 15765-15774.

    11. [11]

      [11] O. Kotova, K. Lyssenko, A. Rogachev, et al., Low temperature X-ray diffraction analysis, electronic density distribution and photophysical properties of bidentate N,O-donor salicylaldehyde Schiff bases and zinc complexes in solid state, J. Photochem. Photobiol. A Chem. 218 (2011) 117-129.

    12. [12]

      [12] G. Consiglio, S. Failla, P. Finocchiaro, I.P. Oliver, S.D. Bella, Aggregation properties of bis(salicylaldiminato)zinc(II) Schiff-base complexes and their Lewis acidic character, Dalton Trans. 41 (2012) 387-395.

    13. [13]

      [13] G. Consiglio, S. Failla, P. Finocchiaro, et al., Supramolecular aggregation/deaggregation in amphiphilic dipolar Schiff-base zinc(II) complexes, Inorg. Chem. 49 (2010) 5134-5142.

    14. [14]

      [14] S. Akine, S.J. Piao, M. Miyashita, T. Nabeshima, Cage-like tris(salen)-type metallocryptand for cooperative guest recognition, Tetrahedron Lett. 54 (2013) 6541-6544.

    15. [15]

      [15] C.A. Strassert, L.E. Dicelio, J. Awruch, Reduction of an amido zinc(II) phthalocyanine by diborane, Synthesis (2006) 799-802.

    16. [16]

      [16] A. Heaton, M. Hill, F. Drakesmith, Polyhalogenonitrobenzenes and derived compounds Part 5. Improved preparations of 1,2,3,4-tetrafluoro-5,6-dinitrobenzene and 3,4,5,6-tetrafluoro-1,2-phenylenediamine, and the use of the latter for the synthesis of tetrafluorobenzheterocycles, J. Fluor. Chem. 81 (1997) 133-138.

    17. [17]

      [17] K. Li, J. Pan, S.S. Feng, et al., Generic strategy of preparing fluorescent conjugatedpolymer-loaded poly(DL-lactide-co-glycolide) nanoparticles for targeted cell imaging, Adv. Funct. Mater. 19 (2009) 3535-3542.

    18. [18]

      [18] D.N. Kumar, B.S. Garg, Synthesis and spectroscopic studies of complexes of zinc(II) with N2O2 donor groups, Spectrochim. Acta A Mol. Biomol. Spectrosc. 64 (2006) 141-147.

  • 加载中
    1. [1]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    2. [2]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    3. [3]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    4. [4]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    7. [7]

      Chengtian Liang Boyuan Zheng Ning Fang . 第38届中国化学奥林匹克(初赛)配位化学试题解析. University Chemistry, 2025, 40(8): 394-400. doi: 10.12461/PKU.DXHX202410054

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    11. [11]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    12. [12]

      Tong-Tong ZhouGuan-Yu DingXue LiLi-Li WenXiao-Xu PangYing-Chen DuanJu-Yang HeGuo-Gang ShanZhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341

    13. [13]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    14. [14]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    15. [15]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    16. [16]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    17. [17]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    18. [18]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    19. [19]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

Metrics
  • PDF Downloads(0)
  • Abstract views(897)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return