Citation: Ji-Feng Wang, Bing-Bing Shi, Gang Li. Preparations and characterizations of two MOFs constructed with hydroxylphenyl imidazole dicarboxylate[J]. Chinese Chemical Letters, ;2015, 26(9): 1059-1064. doi: 10.1016/j.cclet.2015.04.022 shu

Preparations and characterizations of two MOFs constructed with hydroxylphenyl imidazole dicarboxylate

  • Corresponding author: Gang Li, 
  • Received Date: 22 January 2015
    Available Online: 1 April 2015

    Fund Project: We gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 21341002) (No. 21341002)

  • Using the hydrothermal reactions of Mn(II) and Ba(II) salts with 2-(3-hydroxylphenyl)-1H-imidazole-4,5-dicarboxylic acid (m-OHPhH3IDC), two novel metal-organic frameworks, namely, {[Mn(m-OHPhHIDC)(H2O)]·2H2O}n (1) and {[Ba(m-OHPhH2IDC)2(H2O)3] ·2H2O}n (2) have been synthesized and structurally characterized by single-crystal X-ray crystallography, elemental analyses, and IR spectroscopy. Complex 1 features a novel non-interpenetrated three-dimensional (3,4)-connected network with one-dimensional open channels. Complex 2 exhibits a two-dimensional layered structure with rhombic grids. The role of the central metals in the formation of final architectures has been discussed. Furthermore, luminescent and thermal properties of the two complexes have been studied.
  • 加载中
    1. [1]

      [1] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.

    2. [2]

      [2] B.L. Chen, S.C. Xiang, G.D. Qian, Metal-organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res. 43(2010) 1115-1124.

    3. [3]

      [3] H.L. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279.

    4. [4]

      [4] J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Luminescent multifunctional lanthanides-based metal-organic frameworks, Chem. Soc. Rev. 40(2011) 926-940.

    5. [5]

      [5] F.M. Hinterholzinger, A. Ranft, J.M. Feckl, et al., One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption, J. Mater. Chem. 22(2012) 10356-10362.

    6. [6]

      [6] T.K. Maji, R. Matsuda, S. Kitagawa, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater. 6(2007) 142-148.

    7. [7]

      [7] C.F. Zhuang, J.Y. Zhang, Q. Wang, et al., Temperature-dependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated CdII grid network, Chem. Eur. J. 15(2009) 7578-7585.

    8. [8]

      [8] C.P. Li, M. Du, Role of solvents in coordination supramolecular systems, Chem. Commun. 47(2011) 5958-5972.

    9. [9]

      [9] Y. Sakata, S. Furukawa, M. Kondo, et al., Shape-memory nanopores induced in coordination frameworks by crystal downsizing, Science 339(2013) 193-196.

    10. [10]

      [10] X.L.Wang, C. Qin, E.B.Wang, et al., Syntheses, structures, and photoluminescence of a novel class of d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures, Inorg. Chem. 43(2004) 1850-1856.

    11. [11]

      [11] S. Wang, L.R. Zhang, G.H. Li, Q.S. Huo, Y.L. Liu, Assembly of two 3-D metal-organic frameworks from Cd(II) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylic acid, CrystEngComm 10(2008) 1662-1666.

    12. [12]

      [12] L.Z. Chen, D.D. Huang, Synthesis, structure and dielectric properties of a novel Gd coordination polymer based on 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate, Chin. Chem. Lett. 25(2014) 279-282.

    13. [13]

      [13] X. Li, B.L. Wu, C.Y. Niu, Y.Y. Niu, H.Y. Zhang, Syntheses of metal-2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate networks with topological diversity:gas adsorption, thermal stability and fluorescent emission properties, Cryst. Growth Des. 9(2009) 3423-3431.

    14. [14]

      [14] F. Xun, J.G. Wang, B. Liu, et al., Fromtwo-dimensional double decker architecture to three-dimensional pcu framework with one-dimensional tube:syntheses, structures, luminescence, and magnetic studies, Cryst. Growth Des. 12(2012) 927-938.

    15. [15]

      [15] Z.F. Xiong, R.M. Gao, Z.K. Xie, et al., Assembly of a series of MOFs based on the 2-(m-methoxyphenyl)imidazole dicarboxylate ligand, Dalton Trans. 42(2013) 4613-4624.

    16. [16]

      [16] C.J. Wang, T. Wang, W. Zhang, H.J. Lu, G. Li, Two unprecedented transition-metalorganic frameworks showing one dimensional-hexagonal channel open network and two-dimensional sheet structures, Cryst. Growth Des. 12(2012) 1091-1094.

    17. [17]

      [17] Z.F. Xiong, H.L. Jia, B. Ma, G. Li, Syntheses, crystal structures, and properties of three Co(II) supramolecules constructed from phenyl imidazole dicarboxylates, Synth. React. Inorg. Met. Org. Chem. 42(2012) 1204-1210.

    18. [18]

      [18] C.J. Wang, T. Wang, L. Li, et al., MOFs constructed with the newly designed imidazole dicarboxylate bearing a 2-position aromatic substituent:hydro (solvo)thermal syntheses, crystal structures and properties, Dalton Trans. 42(2013) 1715-1725.

    19. [19]

      [19] Z.F. Xiong, B.B. Shi, L. Li, Y.Y. Zhu, G. Li, Construction of transition-metal coordination polymers using multifunctional imidazole dicarboxylates as spacers, CrystEngComm 15(2013) 4885-4899.

    20. [20]

      [20] A.V. Lebedev, A.B. Lebedeva, V.D. Sheludyakov, et al., Synthesis and N-alkylation of 2-alkyl-and 2-arylimidazole-4,5-dicarboxylic acid esters, Russ. J. Gen. Chem. 77(2007) 949-953.

    21. [21]

      [21] G.M. Sheldrick, SHELX-97, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    22. [22]

      [22] W.Y. Wang, X.L. Niu, Y.C. Gao, et al., One chiral and two achiral 3-D coordination polymers constructed by 2-phenyl imidazole dicarboxylate, Cryst. Growth Des. 10(2010) 4050-4059.

    23. [23]

      [23] W.D. Song, S.J. Li, S.W. Tong, et al., Three new coordination frameworks based on 2-ethyl-imidazole-4,5-dicarboxylate and 1,10-phenanthroline:syntheses, crystal structures, and luminescence, J. Coord. Chem. 65(2012) 3653-3664.

    24. [24]

      [24] S.L. Cai, S.R. Zheng, Z.Z. Wen, J. Fan, W.G. Zhang, A series of new three-dimensional d-f heterometallic coordination polymers with rare 10-connected bct net topology based on planar hexanuclear heterometallic second building units, Cryst. Growth Des. 12(2012) 5737-5745.

    25. [25]

      [25] S.R. Zheng, S.L. Cai, Z.Z. Wen, J. Fan, W.G. Zhang, Structures and properties of five main group coordination polymers based on 2-(pyridin-4-yl)-1H-4,5-imidazoledicarboxylic, Polyhedron 38(2012) 190-197.

    26. [26]

      [26] Z.F. Li, C.J. Chen, L.H. Yan, et al., Three main group metal coordination polymers built by 2-propyl-1H-imidazole-4,5-dicarboxylate, Inorg. Chim. Acta 377(2011) 42-49.

    27. [27]

      [27] S.J. Li, W.D. Song, D.L. Miao, et al., Synthesis, structures, and properties of a series of new coordination polymers built from 2-ethyl-1H-imidazole-4,5-dicarboxylate ligand, Z. Anorg. Allg. Chem. 637(2011) 1246-1252.

    28. [28]

      [28] Y.C. Gao, Q.H. Liu, F.W. Zhang, et al., Three main group metal coordination polymers bearing imidazole-based dicarboxylates:hydro(solvo) thermal syntheses, crystal structures and properties, Polyhedron 30(2011) 1-8.

    29. [29]

      [29] L. Pan, T. Frydel, M.B. Sander, X. Huang, J. Li, The effect of pH on the dimensionality of coordination polymers, Inorg. Chem. 40(2001) 1271-1283.

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    4. [4]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    5. [5]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    6. [6]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    9. [9]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    12. [12]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    13. [13]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    14. [14]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    15. [15]

      Kunpeng ZhouZhihao ShiXiao-Hong YiPeng WangAiqun LiChong-Chen Wang . MOFs helping heritage against environmental threats. Chinese Chemical Letters, 2025, 36(5): 110226-. doi: 10.1016/j.cclet.2024.110226

    16. [16]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    17. [17]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    18. [18]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    19. [19]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    20. [20]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return