Citation:
Feng-Hua Zhao, Ruo-Jin Liu, Xiao-Yan Yu, Cheng-Chun Tang, Xiong-Wei Qua, Qing-Xin Zhang. Synthesis of a novel naphthyl-based self-catalyzed phthalonitrile polymer[J]. Chinese Chemical Letters,
;2015, 26(6): 727-729.
doi:
10.1016/j.cclet.2015.03.025
-
A novel naphthyl-based self-catalyzed phthalonitrile monomer was prepared via nucleophilic displacement reaction. The structure was characterized by Fourier infrared spectrum (FT-IR) and nuclear magnetic resonance (1H NMR). The polymerization mechanism was explored. Thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which demonstrated self-promoted behavior and excellent heat resistance.
-
-
-
[1]
[1] M. Laskoski, A. Neal, T.M. Keller, et al., Improved synthesis of oligomeric phthalonitriles and studies designed for low temperature cure, J. Polym. Sci. A: Polym. Chem. 52 (2014) 1662-1668.
-
[2]
[2] K. Zeng, K. Zhou, S. Zhou, et al., Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds, Eur. Polym. J. 45 (2009) 1328-1335.
-
[3]
[3] B. Amir, R.K. Michael, H. Zhou, et al., An efficient approach to prepare ether and amide-based self-catalyzed phthalonitrile resins, Polym. Chem. 4 (2013) 3617-3622.
-
[4]
[4] Z.B. Zhang, Z. Li, H. Zhou, et al., Self-catalyzed silicon-containing phthalonitrile resins with low melting point, excellent solubility and thermal stability, J. Appl. Polym. Sci. 131 (2014) 40919.
-
[5]
[5] S.H. Zhou, H.B. Hong, K. Zeng, et al., Synthesis, characterization and self-promoted cure behaviors of a new phthalonitrile derivative 4-(4-(3,5-diaminobenzoyl)phenoxy) phthalonitrile, Polym. Bull. 62 (2009) 581-591.
-
[6]
[6] H. Guo, Z.R. Chen, J.D. Zhang, et al., Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites, J. Polym. Res. 19 (2012) 9918.
-
[7]
[7] B. Amir, H. Zhou, F. Liu, H. Aurangzeb, Synthesis and characterization of selfcatalyzed imide-containing pthalonitrile resins, J. Polym. Sci. A: Polym. Chem. 48 (2010) 5916-5920.
-
[8]
[8] K. Zeng, K. Zhou, W.R. Tang, et al., Synthesis and curing of a novel aminocontaining phthalonitrile derivative, Chin. Chem. Lett. 18 (2007) 523-526.
-
[9]
[9] A.W. Snow, J.R. Griffith, N.P. Marullo, Syntheses and characterization of heteroatom-bridged metal-free phthalocyanine network polymers and model compounds, Macromolecules 17 (1984) 1614-1624.
-
[10]
[10] T.M. Keller, D.D. Dominguez, High temperature resorcinol-based phthalonitrile polymer, Polymer 46 (2005) 4614-4618.
-
[1]
-
-
-
[1]
Chunshi He , Linqing Li , Yuanrong Sun , Xuefang Wang , Jie Ren , Jianbo Li . Enhanced durability of a novel thiol-epoxy network thermosets with excellent hygrothermal and chemical resistance. Chinese Chemical Letters, 2025, 36(6): 110905-. doi: 10.1016/j.cclet.2025.110905
-
[2]
Xiaonan LI , Hui HAN , Yihan ZHANG , Jing XIONG , Tingting GUO , Juanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376
-
[3]
Chunlei Dai , Liying Wang , Xinru You , Yi Zhao , Zhong Cao , Jun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869
-
[4]
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
-
[5]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[6]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[7]
Rui Wang , Yuan Tian , Xuefeng Gao , Lei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395
-
[8]
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
-
[9]
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
-
[10]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[11]
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
-
[12]
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
-
[13]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[14]
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
-
[15]
Haiyang Peng , Zhipeng Xie , Shuiqing Lu , Da Zhang , Bin Yang , Feng Liang . Dual-functionality composites of polyaniline-coated oxidized carbon nanohorns: Efficient wave absorption and enhanced corrosion resistance. Chinese Chemical Letters, 2025, 36(6): 110818-. doi: 10.1016/j.cclet.2025.110818
-
[16]
Hao Li , Hanzhi Lu , Linlin Hu , Xueli Zhang , Hua Shao , Fulun Li , Yanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342
-
[17]
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
-
[18]
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
-
[19]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[20]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(867)
- HTML views(5)