Citation: Xue-Dong Li, Ran Ma, Liang-Nian He. Fe(NO3)3·9H2O-catalyzed aerobic oxidation of sulfi des to sulfoxides under mild conditions with the aid of trifl uoroethanol[J]. Chinese Chemical Letters, ;2015, 26(5): 539-542. doi: 10.1016/j.cclet.2014.12.010 shu

Fe(NO3)3·9H2O-catalyzed aerobic oxidation of sulfi des to sulfoxides under mild conditions with the aid of trifl uoroethanol

  • Corresponding author: Liang-Nian He, 
  • Received Date: 13 January 2014
    Available Online: 1 December 2014

    Fund Project: We are grateful to the National Natural Science Foundation of China, Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130031110013) (No. 20130031110013) MOE Innovation Team (No. IRT13022) of China for financial support. (No. IRT13022)

  • Selective oxidation of sulfides to sulfoxides was successfully performed by employing readily available Fe(NO3)3·9H2O as the active catalyst with oxygen as the oxidant in 2,2,2-trifluoroethanol (TFE) without the formation of sulfones. Nitrate anion could play a crucial role in promoting the reaction due to the oxidation capacity under acidic media. High yields of sulfoxides were exclusively obtained from the corresponding sulfides. Furthermore, both aromatic and aliphatic sulfides gave moderate to high yields of sulfoxides with this protocol.
  • 加载中
    1. [1]

      [1] I. Fernández, N. Khiar, Recent developments in the synthesis and utilization of chiral sulfoxides, Chem. Rev. 103 (2003) 3651-3706.

    2. [2]

      [2] E. Wojaczynska, J. Wojaczynski, Enantioselective synthesis of sulfoxides: 2000- 2009, Chem. Rev. 110 (2010) 4303-4356.

    3. [3]

      [3] (a) J. Legros, J.R. Dehli, C. Bolm, Applications of catalytic asymmetric sulfide oxidations to the syntheses of biologically active sulfoxides, Adv. Synth. Catal. 347 (2005) 19-31;

    4. [4]

      (b) J.E. Bäckvall, Modern Oxidation Methods, Wiley-VCH, Weinheim, Germany, 2010;

    5. [5]

      (c) M. Bakavoli, A.M. Kakhky, A. Shiri, et al., Selective and mild oxidation of sulfides to sulfoxides by H2O2 using DBUH-Br3 as catalyst, Chin. Chem. Lett. 21 (2010) 651-655;

    6. [6]

      (d) A. Ghorbani-Choghamarani, M. Abbasi, Poly(4-vinylpyridinium tribromide) as metal-free, green and recoverable oxidizing polymer for the chemoselective oxidation of sulfides into sulfoxides, Chin. Chem. Lett. 22 (2011) 114-118.

    7. [7]

      [4] S.L. Jain, B.S. Rana, B. Singh, et al., An improved high yielding immobilization of vanadium Schiff base complexes on mesoporous silica via azide-alkyne cycloaddition for the oxidation of sulfides, Green Chem. 12 (2010) 374-377.

    8. [8]

      [5] (a) M. Hirano, S. Yakabe, J.H. Clark, K. Hiroyuki, M. Takashi, Manganese(III)- catalysed oxidation of sulphides with sodium chlorite in an aprotic solvent in the presence of alumina, Synth. Commun. 26 (1996) 1875-1886;

    9. [9]

      (b) F. Voss, E. Herdtweck, T. Bach, Hydrogen bond induced enantioselectivity in Mn(salen)-catalysed sulfoxidaton reactions, Chem. Commun. 47 (2011) 2137-2139.

    10. [10]

      [6] B.M. Choudary, C.R.V. Reddy, B.V. Prakash, M.L. Kantam, B. Sreedhar, The first example of direct oxidation of sulfides to sulfones by an osmate molecular oxygen system, Chem. Commun. 39 (2003) 754-755.

    11. [11]

      [7] M. Matteucci, G. Bhalay, M. Bradley, Mild and highly chemoselective oxidation of thioethers mediated by Sc(OTf)3, Org. Lett. 5 (2003) 235-237.

    12. [12]

      [8] M.A.M. Capozzi, C. Centrone, G. Fracchiolla, F. Nsao, C. Cardelliccio, A study of factors affecting enantioselectivity in the oxidation of aryl benzyl sulfides in the presence of chiral titanium catalysts, Eur. J. Org. Chem. 23 (2011) 4327-4334.

    13. [13]

      [9] J.B. Arterburn, S.L. Nelson, Rhenium-catalyzed oxidation of sulfides with phenyl sulfoxide, J. Org. Chem. 61 (1996) 2260-2261.

    14. [14]

      [10] P.J. Chai, Y.S. Li, C.X. Tan, An efficient and convenient method for preparation of disulfides from thiols using air as oxidant catalyzed by Co-salophen, Chin. Chem. Lett. 22 (2011) 1403-1406.

    15. [15]

      [11] L. Xu, J. Cheng, M.L. Trudell, Chromium(VI) oxide catalyzed oxidation of sulfides to sulfones with periodic acid, J. Org. Chem. 68 (2003) 5388-5391.

    16. [16]

      [12] A. Bordoloi, A. Vinu, S.B. Halligudi, One-step synthesis of SBA-15 containing tungsten oxide nanoclusters: a chemoselective catalyst for oxidation of sulfides to sulfoxides under ambient conditions, Chem. Commun. 45 (2007) 4806-4808.

    17. [17]

      [13] I. Gamba, S. Palavicini, E. Monzana, L. Casella, Catalytic sulfoxidation by dinuclear copper complexes, Chem. Eur. J. 15 (2009) 12932-12936.

    18. [18]

      [14] B. Li, A.H. Liu, L.N. He, et al., Iron-catalyzed selective oxidation of sulfides to sulfoxides with the polyethylene glycol/O2 system, Green Chem. 14 (2012) 130-135.

    19. [19]

      [15] (a) J. Legros, C. Bolm, Iron-catalyzed asymmetric sulfide oxidation with aqueous hydrogen peroxide, Angew. Chem. Int. Ed. 42 (2003) 5487-5489;

    20. [20]

      (b) J. Legros, C. Bolm, Investigations on the iron-catalyzed asymmetric sulfide oxidation, Chem. Eur. J. 11 (2005) 1086-1092;

    21. [21]

      (c) J. Legros, C. Bolm, Highly enantioselective iron-catalyzed sulfide oxidation with aqueous hydrogen peroxide under simple reaction conditions, Angew. Chem. Int. Ed. 43 (2004) 4225-4228.

    22. [22]

      [16] (a) H. Egami, T. Katsuki, Fe(salan)-catalyzed asymmetric oxidation of sulfides with hydrogen peroxide in water, J. Am. Chem. Soc. 129 (2007) 8940-8941;

    23. [23]

      (b) H. Egami, T. Katsuki, Optimization of asymmetric oxidation of sulfides with the Fe(salan) complex in water and the expanded scope of its application, Synlett 2008 (2008) 1543-1546.

    24. [24]

      [17] (a) O.W.J.S. Rutten, A. van Sandwijk, G. van Weert, The electrochemical reduction of nitrate in acidic nitrate solutions, J. Appl. Electrochem. 29 (1999) 87-92;

    25. [25]

      (b) I.M. Kolthoff, M.K. Chantooni, Dissociation constant, Ka, and stability constant K(HA2 ), of the 1:1 homoconjugate of sulfuric and nitric acids in acetonitrile at 298.1 K. Revised values, J. Chem. Eng. Data 44 (1999) 124-129.

    26. [26]

      [18] L.I. Rossi, S.E. Martín, Possible role of nitrate/nitrite redox cycles in catalytic and selective sulfoxidation reaction Metallic nitrates and bromides as redox mediators: a comparative study, Appl. Catal. A: Gen. 250 (2003) 271-278.

    27. [27]

      [19] (a) I.A. Shuklov, N.V. Dubrovina, A. Bö rner, Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis, Synthesis 19 (2007) 2925-2943;

    28. [28]

      (b) K.S. Ravikumar, V. Kesavan, B. Crousse, et al., Mild and selective oxidation of sulfur compounds in trifluoroethanol: diphenyl disulfide and methyl phenyl sulfoxide [(disulfide, diphenyl- and benzene (methylsulfinyl)-)], Org. Synth. 80 (2003) 184-189.

  • 加载中
    1. [1]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    2. [2]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Wenjuan LiuShanshan ZhangYu WangBin FangWeirui WangShujing SongTomohiro Hakozaki . Three-channel imaging reveals the comprehensive protein modifications and their impact on skin appearance induced by multiple stimuli. Chinese Chemical Letters, 2025, 36(6): 111182-. doi: 10.1016/j.cclet.2025.111182

    5. [5]

      Laiyang ZHUXuze PANXiaoying ZHANGXinyu XUShiheng LIFajin CAIYifan WANGQingxia YAOYi QIUJie SU . Synthesis of stable and porous bimetallic Ti-MOF for photocatalytic oxidation of aromatic sulfides to sulfoxides. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2115-2126. doi: 10.11862/CJIC.20250139

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    8. [8]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Lin ZhangJianlong LiMaoyuan HuYao XuXiaoli XiongZhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123

    12. [12]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    13. [13]

      Mengzhao LiuJie YinChengjian WangWeiji WangYuan GaoMengxia YanPing Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271

    14. [14]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    17. [17]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    18. [18]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    19. [19]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(1077)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return