Citation: Wei-Xia Song, Qing-Lan Guo, Yong-Chun Yang, Jian-Gong Shi. Two homosecoiridoids from the fl ower buds of Lonicera japonica[J]. Chinese Chemical Letters, ;2015, 26(5): 517-521. doi: 10.1016/j.cclet.2014.11.035 shu

Two homosecoiridoids from the fl ower buds of Lonicera japonica

  • Corresponding author: Jian-Gong Shi, 
  • Received Date: 29 January 2014
    Available Online: 21 November 2014

    Fund Project:

  • Two new homosecoiridoids, named loniaceticiridoside (1) and lonimalondialiridoside (2), were isolated from an aqueous extract of the flower buds of Lonicera japonica. Their structures including the absolute configuration were determined by extensive spectroscopic studies, especially by 2D NMR and CD data analysis. A proposed biosynthetic pathway and preliminary investigations of the biological activity of compounds 1 and 2 are also discussed.
  • 加载中
    1. [1]

      [1] Jiangsu New Medical College, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Publishing House, Shanghai, 1977, pp. 1403-1405.

    2. [2]

      [2] R.W. Teng, D.Z. Wang, C.X. Chen, Two triterpenoid saponins from Lonicera japonica, Chin. Chem. Lett. 11 (2000) 337-340.

    3. [3]

      [3] R. Kakuda, M. Imai, Y. Yaoita, M. Koichi, K. Masao, Secoiridoid glycosides from the flower buds of Lonicera japonica, Phytochemistry 55 (2000) 879-881.

    4. [4]

      [4] C.W. Choi, H.A. Jung, S.S. Kang, J.S. Choi, Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae, Arch. Pharm. Res. 30 (2007) 1-7.

    5. [5]

      [5] D.Q. Yu, R.Y. Chen, L.J. Huang, et al., The structure and absolute configuration of Shuangkangsu: a novel natural cyclic peroxide from Lonicera japonica (Thunb.), J. Asian Nat. Prod. Res. 10 (2008) 851-856.

    6. [6]

      [6] L.M. Lin, X.G. Zhang, J.J. Zhu, et al., Two new triterpenoid saponins from the flowers and buds of Lonicera japonica, J. Asian Nat. Prod. Res. 10 (2008) 925-929.

    7. [7]

      [7] E.J. Lee, J.S. Kim, H.P. Kim, J.H. Lee, S.S. Kang, Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities, Food Chem. 120 (2010) 134-139.

    8. [8]

      [8] Z.F. Zheng, Q.J. Zhang, R.Y. Chen, D.Q. Yu, Four new N-contained iridoid glycosides from flower buds of Lonicera japonica, J. Asian Nat. Prod. Res. 14 (2012) 729-737.

    9. [9]

      [9] M.H. Chen, L. Lin, L. Li, et al., Enantiomers of an indole alkaloid containing unusual dihydrothiopyran and 1,2,4-thiadiazole rings from the root of Isatis indigotica, Org. Lett. 14 (2012) 5668-5671.

    10. [10]

      [10] Y. Tian, Q.L. Guo, W.D. Xu, et al., A minor diterpenoid with a new 6/5/7/3 fusedring skeleton from Euphorbia micractina, Org. Lett. 16 (2014) 3950-3953.

    11. [11]

      [11] W.D. Xu, Y. Tian, Q.L. Guo, Y.C. Yang, J.G. Shi, Secoeuphoractin, a minor diterpenoid with a new skeleton from Euphorbia micractina, Chin. Chem. Lett. 25 (2014) 1531-1534.

    12. [12]

      [12] W.X. Song, S. Li, S.J. Wang, et al., Pyridinium alkaloid-coupled secoiridoids from the flower buds of Lonicera japonica, J. Nat. Prod. 71 (2008) 922-925.

    13. [13]

      [13] Y. Yu, W.X. Song, C.G. Zhu, et al., Homosecoiridoids from the flower buds of Lonicera japonica, J. Nat. Prod. 74 (2011) 2151-2160.

    14. [14]

      [14] Y. Yu, C.G. Zhu, S.J. Wang, et al., Homosecoiridoid alkaloids with amino acid units from the flower buds of Lonicera japonica, J. Nat. Prod. 76 (2013) 2226-2233.

    15. [15]

      [15] W.X. Song, Y.C. Yang, J.G. Shi, Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica: isolation, structure elucidation, semisynthesis, and biological activities, Chin. Chem. Lett. 25 (2014) 1215-1219.

    16. [16]

      [16] Z.B. Jiang, W.X. Song, J.G. Shi, Two new 1-(6'-O-acyl-β-D-glucopyranosyl)pyridinium- 3-carboxylates from the flower buds of Lonicera japonica, Chin. Chem. Lett. 26 (2015) 69-72.

    17. [17]

      [17] F. Wang, Y.P. Jiang, X.L. Wang, et al., Aromatic glycosides from the flower buds of Lonicera japonica, J. Asian Nat. Prod. Res. 15 (2013) 492-501.

    18. [18]

      [18] F. Wang, Y.P. Jiang, X.L. Wang, et al., Chemical constituents from flower buds of Lonicera japonica, China J. Chin. Mater. Med. 38 (2013) 1378-1385.

    19. [19]

      [19] N. Harada, K. Nakanishi, Determining the chiralities of optically active glycols, J. Am. Chem. Soc. 91 (1969) 3989-3991.

    20. [20]

      [20] M. Koreeda, N. Harada, K. Nakanishi, Exciton chirality methods as applied to conjugated enones, esters, and lactones, J. Am. Chem. Soc. 96 (1974) 266-268.

    21. [21]

      [21] A. Itoh, K. Fujii, S. Tomatsu, et al., Six secoiridoid glucosides from Adina racemosa, J. Nat. Prod. 66 (2003) 1212-1216.

    22. [22]

      [22] A. Itoh, N. Oya, E. Kawaguchi, et al., Secoiridoid glucosides from Strychnos spinosa, J. Nat. Prod. 68 (2005) 1434-1436.

    23. [23]

      [23] L.F. Tietze, C. Bärtels, Synthesis of bridged homoiridoids from secologanin by tandem-Knoevenagel-hetero-Diels-Alder reactions, Liebigs Ann. Chem. 1991 (1991) 155-160.

    24. [24]

      [24] Y. Kashiwada, Y. Omichi, S. Kurimoto, et al., Conjugates of a secoiridoid glucoside with a phenolic glucoside from the flower buds of Lonicera japonica Thunb, Phytochemistry 96 (2013) 423-429.

  • 加载中
    1. [1]

      Juan HeJiao-Xian DuMeng WangXiao-Dong LuoTao Feng . Irpexlactones A and B, a pair of ring-rearranged tremulane sesquiterpenoids from the basidiomycete Irpex lacteus and their anti-inflammatory activity. Chinese Chemical Letters, 2025, 36(10): 110769-. doi: 10.1016/j.cclet.2024.110769

    2. [2]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    3. [3]

      Mengyu ChenQinglin ZhouTianyun QinNingyao SunYuxi ChenYuwei GongXingyi LiJinsong Liu . An ionic liquid-reinforced gelatin hydrogel with strong adhesion, antibacterial and anti-inflammatory properties for treating oral ulcers. Chinese Chemical Letters, 2025, 36(7): 110441-. doi: 10.1016/j.cclet.2024.110441

    4. [4]

      Chenshi LinChao TengBingbing LiWei He . Anti-inflammatory drug-assisted microRNA gene therapy for effectively improving pulmonary hemodynamics. Chinese Chemical Letters, 2025, 36(7): 110450-. doi: 10.1016/j.cclet.2024.110450

    5. [5]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    6. [6]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    7. [7]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    8. [8]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    9. [9]

      Meijia ZhengYingjie LiuChunmei ChenQin LiXinran ZhangXiaotian ZhangWeiguang SunYonghui ZhangHucheng Zhu . Ophiobolin-type sesterterpenoids with unprecedented chemical architectures from Bipolaris oryzae and their inflammatory activity. Chinese Chemical Letters, 2025, 36(12): 110904-. doi: 10.1016/j.cclet.2025.110904

    10. [10]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    11. [11]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    12. [12]

      Yuanmao FuZiang WangKefan WuFeiyang LiXian ZhangHongyuan CuiXiaolin WangHui GuoYuezhong Meng . Bio-inspired multifunctional hydrogels with adhesive, anti-bacterial, anti-icing and sensing properties. Chinese Chemical Letters, 2025, 36(7): 110479-. doi: 10.1016/j.cclet.2024.110479

    13. [13]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    14. [14]

      Jingting WangYuanyuan ChenLinlin HanShasha XiaXingyao ZhangPeng XueYuejun KangJian MingZhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029

    15. [15]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    16. [16]

      Junfei YangKe WangShuxin SunTianqi PeiJunxiu LiXunwei GongCuixia ZhengYun ZhangQingling SongLei Wang . A "spore-like" oral nanodrug delivery platform for precision targeted therapy of inflammatory bowel disease. Chinese Chemical Letters, 2025, 36(3): 110180-. doi: 10.1016/j.cclet.2024.110180

    17. [17]

      Linzhou YinXiaowen JiangMiao WangYiren YangZhonggui HeJin SunHuiyuan GaoMengchi Sun . Phytoconstituent-derived nano-medicines/vesicles providing a promising dawn for inflammatory bowel disease. Chinese Chemical Letters, 2025, 36(6): 110224-. doi: 10.1016/j.cclet.2024.110224

    18. [18]

      Ruifeng LiangYanbei TuPeng HuaYongzhuo HuangMeiwan Chen . ROS-responsive micelles co-loaded dexamethasone and pristimerin to restore the homeostasis of the inflammatory microenvironment for rheumatoid arthritis therapy. Chinese Chemical Letters, 2025, 36(6): 110335-. doi: 10.1016/j.cclet.2024.110335

    19. [19]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    20. [20]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

Metrics
  • PDF Downloads(0)
  • Abstract views(1314)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return