Citation: Su-Hua Fan, Jie Shen, Hai Wu, Ke-Zhi Wangb, An-Guo Zhang. A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion[J]. Chinese Chemical Letters, ;2015, 26(5): 580-584. doi: 10.1016/j.cclet.2014.11.031 shu

A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion

  • Received Date: 15 September 2014
    Available Online: 17 November 2014

    Fund Project: the Innovation Training Program for the Anhui College students (Nos. AH201310371039 and AH201310371041) (No. 1408085QB39)

  • A dual colorimetric and luminescent sensor based on a heteroleptic ruthenium dye [Ru(Hipdpa)(Hdcbpy)(NCS)2]-·0.5H+0.5[N(C4H9)4]+ Ru(Hipdpa) {where Hdcbpy = monodeprotonted-4,4'-dicarboxy-2,2'- bipyridine and Hipdpa = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline} for selective detection of Hg2+ is presented. The results of spectrophotometric titrations revealed an evident luminescence intensity enhancement (I/I0 = 11) and a considerable blue shift in visible absorption and luminescence maxima with the addition of Hg2+. The sensitive response of the optical sensor on Hg2+ was attributed to the binding of the electron-deficient Hg2+ to the electron-rich sulfur atom of the thiocyanate (NCS) ligand in the Ru(Hipdpa), which led to an increase in the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Accordingly, the blue shift in the absorption spectrum of Ru(Hipdpa) due to the binding of Hg2+ was obtained. Ru(Hipdpa) was found to have decreased Hg2+ detection limit and improved linear region as compared to di(tetrabutylammonium) cis-bis(isothiocyanato)bis(2,2'-bipyridine-4-carboxylic acid-4'- carboxylate)ruthenium(II) N719. Moreover, a dramatic color change from pink to yellow was observed, which allowed simple monitoring of Hg2+ by either naked eyes or a simple colorimetric reader. Therefore, the proposed sensor can provide potential applications for Hg2+ detection.
  • 加载中
    1. [1]

      [1] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301 (2003) 1203.

    2. [2]

      [2] M.S. Gustin, M. Coolbaugh, M. Engle, et al., Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol. 43 (2003) 339-351.

    3. [3]

      [3] C.M.L. Carvalho, E.H. Chew, S.I. Hashemy, J. Lu, A. Holmgren, Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283 (2008) 11913-11923.

    4. [4]

      [4] T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations, N. Engl. J. Med. 349 (2003) 1731-1737.

    5. [5]

      [5] G.J. Myers, P.W. Davidson, C. Cox, et al., Summary of the seychelles child development study on the relationship of fetal methylmercury exposure to neurodevelopment, Neurotoxicology 16 (1995) 711-716.

    6. [6]

      [6] M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution, Crit. Rev. Toxicol. 25 (1995) 1-24.

    7. [7]

      [7] H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev. 41 (2012) 3210- 3244.

    8. [8]

      [8] J.O. Moon, M.G. Choi, T. Sun, J.I. Choe, S.K. Chang, Synthesis of thionaphthalimides and their dual Hg2+-selective signaling by desulfurization of thioimides, Dyes Pigment 96 (2013) 170-175.

    9. [9]

      [9] X.J. Jiang, C.L. Wong, P.C. Lo, K.P. Ng Dennis, A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions, Dalton Trans. 41 (2012) 1801-1807.

    10. [10]

      [10] S. Maiti, C. Pezzato, S.G. Martin, L.J. Prins, Multivalent interactions regulate signal transduction in a self-assembled Hg2+ sensor, J. Am. Chem. Soc. 136 (2014) 11288-11291.

    11. [11]

      [11] J.F. Li, Y.Z. Wu, F.Y. Song, et al., A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties, J. Mater. Chem. 22 (2012) 478-482.

    12. [12]

      [12] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A new "turn-on" chemodosimeter for Hg2+: ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3- dithiane, Chem. Commun. 48 (2012) 5094-5096.

    13. [13]

      [13] Z.Q. Hu, W.M. Zhuang, M. Li, et al., Highly sensitive and selective turn-on fluorescent chemodosimeter for Hg2+ based on thiorhodamine 6G-amide and its applications for biological imaging, Dyes Pigments 98 (2013) 286-289.

    14. [14]

      [14] L. Wang, X.J. Zhu, W.Y. Wong, et al., Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for mercury(II), Dalton Trans. (19) (2005) 3235- 3240.

    15. [15]

      [15] Z.K. Wu, Zhang Y.F., J.S. Ma, G.Q. Yang, Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement, Inorg. Chem. 45 (2006) 3140-3142.

    16. [16]

      [16] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay, Anal. Chem. 83 (2011) 2324-2329.

    17. [17]

      [17] X. Ma, F.Y. Song, L. Wang, Y.X. Cheng, C.J. Zhu, Polymer-based colorimetric and "turn off" fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg2+ detection, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 517-522.

    18. [18]

      [18] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, A selective and sensitive fluoroionophore for HgII, AgI , and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc. 122 (2000) 968-969.

    19. [19]

      [19] X.M. Wang, H. Yan, X.L. Feng, Y. Chen, 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.

    20. [20]

      [20] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, et al., Reversible colorimetric probes for mercury sensing, J. Am. Chem. Soc. 127 (2005) 12351-12356.

    21. [21]

      [21] A.Reynal, J. Albero, A. Vidal-Ferran, E. Palomares, Diastereoselectivity andmolecular recognition of mercury(II) ions, Inorg. Chem. Commun. 12 (2009) 131-134.

    22. [22]

      [22] W.C. Yang, S.H. Fan, K.Z. Wang, Optically highly selective sensing of fluoride ion by N3 dye, Acta Phys. Chim. Sin. 24 (2008) 1313-1315.

    23. [23]

      [23] X.H. Li, X.F. Duan, F.Y. Li, C.H. Huang, Synthesis of new mixed-ligands amphiphilic ruthenium complex and its naked-eye detecable recognition of Hg2+, Chem. J. Chin. Univ. 27 (2006) 419-423.

    24. [24]

      [24] S.H. Fan, A.G. Zhang, C.C. Ju, L.H. Gao, K.Z. Wang, A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties, Inorg. Chem. 49 (2010) 3752-3763.

    25. [25]

      [25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Inc, Pittsburgh, PA, 2003.

    26. [26]

      [26] P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim. 9 (1928) 113-203.

    27. [27]

      [27] M. Zhang, M.Y. Li, F.Y. Li, et al., A novel Y-type two-photon active fluorophore: synthesis and appliciation in ratiometric fluorescent sensosr for fluoride anion, Dyes Pigment 77 (2008) 408-414.

    28. [28]

      [28] D.Q. Shi, H.Y. Wang, X.Y. Li, et al., Novel N,N'-diacylhydrazine-based colorimetric receptors for selective sensing of fluoride and acetate anions, Chin. J. Chem. 25 (2007) 973-976.

    29. [29]

      [29] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533- 3539.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    3. [3]

      Chong WangHao XieRulan XiaXuewei LiaoJin WangHuajun YangChen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642

    4. [4]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    5. [5]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    6. [6]

      Chen-Xin WangGuang-Lei LiYu HangDan-Feng LuJian-Qi YeHao SuBing HouTao SuoDan Wen . Shock-resistant wearable pH sensor based on tungsten oxide aerogel. Chinese Chemical Letters, 2025, 36(7): 110502-. doi: 10.1016/j.cclet.2024.110502

    7. [7]

      Qiang-Qiang JiaJia-Qi LuoZhi-Yu XueJing-Song TangWen-Qiang QiuChang-Feng WangZhi-Xu ZhangHai-Feng LuYi ZhangDa-Wei Fu . Enhanced output power density of PVDF/LM composite for piezoelectric sensor. Chinese Chemical Letters, 2025, 36(11): 110471-. doi: 10.1016/j.cclet.2024.110471

    8. [8]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    9. [9]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    10. [10]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    11. [11]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    12. [12]

      Yubin FengWeihang ZhuXinting YangZhe YangChenke WeiYukai GuoAndrew K. WhittakerChun ShenYue ZhaoWenrui QuBai YangQuan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554

    13. [13]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    14. [14]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    15. [15]

      Fangbing WangQiankun ZengJing RenMin ZhangGuoyue Shi . A membrane-based plasma separator coupled with ratiometric fluorescent sensor for biochemical analysis in whole blood. Chinese Chemical Letters, 2025, 36(7): 110494-. doi: 10.1016/j.cclet.2024.110494

    16. [16]

      Ting HuangXiaohua ZhuMeiling LiuHaitao LiYouyu ZhangYang LiuShouzhuo Yao . Bioinspired interface-mediated multichannel sensor array for rapid and robust identification of bacteria. Chinese Chemical Letters, 2025, 36(8): 110530-. doi: 10.1016/j.cclet.2024.110530

    17. [17]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    18. [18]

      Zhijuan NiuPeizhe SunKwangnak KohChangping Li . Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection. Chinese Chemical Letters, 2025, 36(11): 110844-. doi: 10.1016/j.cclet.2025.110844

    19. [19]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    20. [20]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

Metrics
  • PDF Downloads(0)
  • Abstract views(1054)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return