Citation: Meng-Juan Li, Yan-Hong Huang, An-Qi Ju, Tian-Shi Yu, Ming-Qiao Ge. Synthesis and characterization of azo dyestuff based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly(ethylene terephthalate) fibers[J]. Chinese Chemical Letters, ;2014, 25(12): 1550-1554. doi: 10.1016/j.cclet.2014.09.022 shu

Synthesis and characterization of azo dyestuff based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly(ethylene terephthalate) fibers

  • Corresponding author: Meng-Juan Li,  Ming-Qiao Ge, 
  • Received Date: 24 May 2014
    Available Online: 18 September 2014

    Fund Project: This work was financially supported by the National High-tech R&D Program of China (863 Program, No. 2012AA030313) (863 Program, No. 2012AA030313) the Open Project Program of Key Laboratory of Eco-Textiles (Jiangnan University) (Jiangnan University) Ministry of Education, China (No. KLET1115) (No. KLET1115) the Fundamental Research Funds for the Central Universities (No. JUSRP11201) (No. JUSRP11201)

  • This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate) (PET) fibers into useful products for the textile industry. PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst. The glycolysis product, bis(2-hydroxyethyl) terephthalate (BHET), was purified through repeated crystallization to get an average yield above 80%. Then, BHET was nitrated, reduced, and azotized to get diazonium salt. Finally, the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff. The structures of BHET and azo dyestuff were identified by FTIR and 1H NMR spectra and elemental analysis. Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color. The performances of the dyestuff were described with dye uptake, color fastness, K/S, L*, a*, b*, and ΔE* values.
  • 加载中
    1. [1]

      [1] D.E. Nikles, M.S. Farahat, New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: a review, Macromol. Mater. Eng. 290 (2005) 13-30.

    2. [2]

      [2] A. Oromiehie, A. Mamizadeh, Recycling PET beverage bottles and improving properties, J. Polym. Int. 53 (2004) 728-732.

    3. [3]

      [3] L. Bartolome, M. Imran, B.G. Cho, A.A.M. Waheed, H.K. Do, Recent developments in the chemical recycling of PET, in: D.S. Achilias (Ed.), Material Recycling -Trends and Perspectives, Intech, Croatia, 2012, pp. 65-84.

    4. [4]

      [4] S. Sivaram, in: Proceedings of National Seminar on Recycling and Plastics Waste Management, India, (1997), pp. 283-288.

    5. [5]

      [5] H.J. Koo, G.S. Chang, S.H. Kim, W.G. Hahm, S.Y. Park, Effects of recycling processes on physical, mechanical and degradation properties of PET yarns, Fibers Polym. 14 (2013) 2083-2087.

    6. [6]

      [6] A. Aguado, L. Martínez, L. Becerra, et al., Chemical depolymerisation of PET complex waste: hydrolysis vs. glycolysis, J. Mater. Cycles Waste Manag. 16 (2014) 201-210.

    7. [7]

      [7] D. Carta, G. Cao, C. D'Angeli, Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis, J. Environ. Sci. Pollut. Res. 10 (2003) 390-394.

    8. [8]

      [8] L.R. Zhang, J. Gao, J.Z. Zou, F.P. Yi, Hydrolysis of poly (ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts, J. Appl. Polym. Sci. 130 (2013) 2790-2795.

    9. [9]

      [9] M. Imran, D.H. Kim, W.A. Al-Masry, et al., Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis, Polym. Degrad. Stabil. 98 (2013) 904-915.

    10. [10]

      [10] N.D. Pingale, S.R. Shukla, Microwave-assisted aminolytic depolymerization of PET waste, Eur. Polym. J. 45 (2009) 2695-2700.

    11. [11]

      [11] R. Shamsi, M. Abdouss, G.M.M. Sadeghi, F.A. Taromi, Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties, J. Polym. Int. 58 (2009) 22-30.

    12. [12]

      [12] Y. Yang, Y.J. Lu, H.W. Xiang, Y.Y. Xu, Y.W. Li, Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling, Polym. Degrad. Stabil. 75 (2002) 185-191.

    13. [13]

      [13] P.K. Roy, R. Mathur, D. Kumar, C. Rajagopal, Tertiary recycling of poly(ethylene terephthalate) wastes for production of polyurethane-polyisocyanurate foams, J. Environ. Chem. Eng. 1 (2013) 1062-1069.

    14. [14]

      [14] M.J. Li, J. Luo, Y.H. Huang, et al. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams, J. Polym. Appl. Sci. 131 (2014), http://dx.doi.org/10.1002/AP.P.40857.

    15. [15]

      [15] I. Duque-Ingunza, R. Ló pez-Fonseca, B. de Rivas, J.I. Gutié rrez-Ortiz, Synthesis of unsaturated polyester resin from glycolysed postconsumer PET wastes, J. Mater. Cycles Waste Manag. 15 (2013) 256-263.

    16. [16]

      [16] A.M. Atta, W. Brostow, T. Datashvili, et al., Porous polyurethane foams based on recycled poly(ethylene terephthalate) for oil sorption, Polym. Int. 62 (2013) 116-126.

    17. [17]

      [17] S.R. Shukla, A.M. Harad, L.S. Jawale, Chemical recycling of PET waste into hydrophobic textile dyestuffs, Polym. Degrad. Stabil. 94 (2009) 604-609.

    18. [18]

      [18] V.S. Palekar, N.D. Pingale, S.R. Shukla, Synthesis, spectral properties and application of novel disazo disperse dyes derived from polyester waste, Color Technol. 126 (2010) 86-91.

    19. [19]

      [19] J. Choi, H. Lee, A.D. Towns, Dyeing properties of novel azo disperse dyes derived from phthalimide and color fastness on poly (lactic acid) fiber, Fibers Polym. 11 (2010) 199-204.

    20. [20]

      [20] M. Ghaemy, H. Mighani, Synthesis and identification of dinitro-and diaminoterephthalic acid, Chin. Chem. Lett. 20 (2009) 800-804.

    21. [21]

      [21] W. Ma, M. Meng, X. Jiang, B.T. Tang, S.F. Zhang, Synthesis of a water-soluble macromolecular light stabilizer containing hindered amine structures, Chin. Chem. Lett. 24 (2013) 153-155.

    22. [22]

      [22] R. McDonald, Colour Physics for Industry, 2nd ed., Society of Dyers and Colourists, Bradford, 1997.

    23. [23]

      [23] J.D. Wang, S.M. Han, D.D. Ke, Synthesis and white-light emission character of CdS magic-sized nanocrystals, Chin. Chem. Lett. 23 (2012) 1407-1410.

  • 加载中
    1. [1]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    2. [2]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    3. [3]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    4. [4]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    5. [5]

      Baoqi WuRongzhi TangZhi-Wei LiFeng LinZongyu SunHuanyu XiaLin JiangYu Tan . Selective encapsulation of azo compounds by tetracationic cyclophane in water and photo-controlled reversible release. Chinese Chemical Letters, 2025, 36(9): 110896-. doi: 10.1016/j.cclet.2025.110896

    6. [6]

      Zhiyao YangKuirong FuWentao YuAlong JiaXinnan ChenYimin CaiXiaowei LiWen FengLihua Yuan . A multi-stimuli responsive [3]rotaxane based on hydrogen-bonded aramide azo-macrocycles. Chinese Chemical Letters, 2025, 36(9): 110842-. doi: 10.1016/j.cclet.2025.110842

    7. [7]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    8. [8]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    9. [9]

      Li-Ying WangJun-Jie YuShuai WangYang LiuKe-Xian SongJi-Pan YuLi-Yong YuanZhi-Rong LiuWei-Qun Shi . Pyridine-based ionic sp2 carbon-conjugated covalent organic frameworks for selective extraction of Pu(Ⅳ) from high-level liquid waste. Chinese Chemical Letters, 2025, 36(8): 110706-. doi: 10.1016/j.cclet.2024.110706

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    14. [14]

      Jiarong ZHUXiaohua ZHANGXinting XIONGXuliang NIEXiuying SONGMiaomiao ZHANGDayong PENGXiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    17. [17]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    18. [18]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    19. [19]

      Shuang MaGuangying WanZhuoying YanXuecheng LiuTiezhu ChenXinmin WangJinhang DaiJuan LinTiefeng LiuXingxing Gu . Eco-friendly aqueous binder derived from waste ramie for high-performance Li-S battery. Chinese Chemical Letters, 2025, 36(5): 109853-. doi: 10.1016/j.cclet.2024.109853

    20. [20]

      Zhaoyu JinRenjun GuanXin LiDunyi YuanPanpan Li . Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes. Chinese Chemical Letters, 2025, 36(7): 110506-. doi: 10.1016/j.cclet.2024.110506

Metrics
  • PDF Downloads(0)
  • Abstract views(1147)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return