Citation: Kun Chen, Guang-Hua Wang, Wen-Bing Li, Dong Wan, Qin Hu, Lu-Lu Lu. Application of response surface methodology for optimization of Orange Ⅱ removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles[J]. Chinese Chemical Letters, ;2014, 25(11): 1455-1460. doi: 10.1016/j.cclet.2014.06.014 shu

Application of response surface methodology for optimization of Orange Ⅱ removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles

  • Corresponding author: Kun Chen, 
  • Received Date: 27 March 2014
    Available Online: 6 June 2014

    Fund Project: This project was financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20114219110002) (No. 20114219110002)

  • In this study, Fe3O4 nanoparticles (Fe3O4 NPs) were successfully prepared via oxidation-precipitation method and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The characterization results indicated that Fe3O4 NPs with regular crystal structure and a narrow of diameters had been synthesized successfully and had high purity. A series of experiments were carried out to investigate the degradation of Orange Ⅱ by the obtained heterogeneous Fe3O4 catalysts in the presence of H2O2. The response surface methodology (RSM) based on Box-Behnken design (BBD) was employed to design and optimize individual and interactive effects of the four main independent parameters (catalyst loading, initial pH, reaction temperature and H2O2 concentration) on decolorization efficiency of Orange Ⅱ. A significant quadratic model (p-value <0.0001, R2=0.9369) was derived using analysis of variance (ANOVA). Optimum conditions were catalyst loading of 1.5 g/L, initial pH of 2.7, reaction temperature of 42℃ and H2O2 concentration of 22 mmol/L, respectively. The predicted decolorization rate under the optimum conditions as determined by the proposed model was 99.55%. Confirmatory tests were carried out and the decolorization rate of 99.49% was observed under the optimum conditions, which agreed well with the model prediction.
  • 加载中
    1. [1]

      [1] L. Gu, F.Y. Song, N.W. Zhu, An innovative electrochemical degradation of 1-diazo- 2-naphthol-4-sulfonic acid in the presence of Bi2Fe4O9, Appl. Catal. B: Environ. 110 (2011) 186-194.

    2. [2]

      [2] P. Peralta-Zamora, A. Kunz, S.G. de Moraes, et al., Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photochemical processes, Chemosphere 38 (1999) 835-852.

    3. [3]

      [3] A.N. Soon, B.H. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process, Desalination 269 (2011) 1-16.

    4. [4]

      [4] Y. Zhang, Y.S. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Stability of commercial metal oxide nanoparticles in water, Water Res. 42 (2008) 2204-2212.

    5. [5]

      [5] R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments, Eighth Applications to Engineering and Science, 2nd ed., New York, Wiley, 2003.

    6. [6]

      [6] A.I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev. Comput. Stat. 2 (2010) 128-149.

    7. [7]

      [7] G. Nagarajan, G. Annadurai, Biodegradation of reactive dye (Verofix Red) by the white-rot fungus Phanerochaete chrysosporium using Box-Behnken experimental design, Bioprocess Biosyst. Eng. 20 (1999) 435-440.

    8. [8]

      [8] A. Freeny, Empirical model building and response surfaces, Technometrics 30 (1988) 229-231.

    9. [9]

      [9] Z. Zhang, H. Zheng, Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology, J. Hazard. Mater. 172 (2009) 1388-1393.

    10. [10]

      [10] K. Murugesan, A. Dhamija, I.H. Nam, Y.M. Kim, Y.S. Chang, Decolourization of reactive black 5 by laccase: optimization by response surface methodology, Dyes Pigments 75 (2007) 176-184.

    11. [11]

      [11] H.L. Liu, Y.R. Chiou, Optimal decolorization efficiency of Reactive Red 239 by UV/ TiO2 photocatalytic process coupled with response surface methodology, Chem. Eng. J. 112 (2005) 173-179.

    12. [12]

      [12] F. Chen, W. Ma, Fenton degradation of malachite green catalyzed by aromatic additives, J. Chem. Phys. A 106 (2002) 9485-9490.

    13. [13]

      [13] A.L. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939) 978-983.

    14. [14]

      [14] Z. Huang, F. Tang, Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres, J. Colloid Interface Sci. 281 (2005) 432-436.

    15. [15]

      [15] J. Sun, S.B. Zhou, P. Hou, et al., Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J. Biomed. Mater. Res. A 80 (2007) 333-341.

  • 加载中
    1. [1]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    2. [2]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    3. [3]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    4. [4]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    5. [5]

      Lin ZhangJianlong LiMaoyuan HuYao XuXiaoli XiongZhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123

    6. [6]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    7. [7]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    8. [8]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    9. [9]

      Ning LiuMan TianYe ZhangJinming YangZhihao WangWangxi DaiGuixiang QuanJianqiu LeiXiaodong ZhangLiang Tang . Three-dimensional MIL-88A(Fe)-derived α-Fe2O3 and graphene composite for efficient photo-Fenton-like degradation of ciprofloxacin. Chinese Chemical Letters, 2025, 36(12): 111063-. doi: 10.1016/j.cclet.2025.111063

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    14. [14]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    15. [15]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    16. [16]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    17. [17]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    18. [18]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    19. [19]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    20. [20]

      Siyuan YouRui LiHaoyun LuLifei HouXing XuYanan Shang . Modulation of the structures and properties of iron-carbon composites by different small molecular carbon sources for Fenton-like reactions. Chinese Chemical Letters, 2025, 36(9): 110955-. doi: 10.1016/j.cclet.2025.110955

Metrics
  • PDF Downloads(0)
  • Abstract views(1168)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return