Citation:
Yong-Juan Lu, Jun-Hong Jia. The effect of complexing agent on crystal growth, structure and properties of nanostructured Cu2-xS thin films[J]. Chinese Chemical Letters,
;2014, 25(11): 1473-1478.
doi:
10.1016/j.cclet.2014.06.003
-
Thin films of Cu2-xS (x=0, 1) were deposited on self-assembled, monolayer modified substrates in the copper-thiosulfate system with various concentrations of ethylene diamine tetraacetic acid (EDTA) at a low temperature of 70℃. The thin films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The optical and photoelectrochemical (PEC) properties of the Cu2-xS semiconductor films were investigated by ultraviolet-visible (UV-vis) absorption spectroscopy and a three-electrode system. It is found that EDTA plays a key role in the process of Cu2-xS nanocrystals formation and growth. The compositions of the Cu2-xS nanocrystals varied from Cu2S (chalcocide) to CuS (covellite) through adjusting the concentration of EDTA, which is used as a complexing agent to yield high-quality Cu2-xS films. The growth mechanisms of Cu2-xS nanocrystals with different EDTA concentrations are proposed and discussed in detail.
-
-
-
[1]
[1] D.C. Reynolds, G. Leies, L.L. Antes, R.E. Marburger, Photovoltaic effect in cadmium sulfide, Phys. Rev. 96 (1954) 533-534.
-
[2]
[2] Y.B. Li, W. Lu, Q. Huang, et al., Copper sulfide nanoparticles for photothermal ablation of tumor cells, Nanomedicine 5 (2010) 1161-1171.
-
[3]
[3] I. Ancutiene, V. Janickis, R. Ivanauskas, Formation and characterization of conductive thin layers of copper sulfide (CuxS) on the surface of polyethylene and polyamide by the use of higher polythionic acids, Appl. Surf. Sci. 252 (2006) 4218-4225.
-
[4]
[4] Z.B. Hai, J.L. Huang, H. Remita, J.F. Chen, Enhancement of alternating current electroluminescence properties by the addition of graphene oxide nanosheets as dielectric materials, Mater. Lett. 108 (2013) 304-307.
-
[5]
[5] M.T.S. Nair, L. Guerrero, P.K. Nair, Conversion of chemically deposited CuS thin films to Cu1.8S and Cu1.96S by annealing, Semicond. Sci. Technol. 13 (1998) 1164-1169.
-
[6]
[6] C. Nunes de Carvalho, P. Parreira, et al., P-type CuxS thin films: integration in a thin film transistor structure, Thin Solid Films 543 (2013) 3-6.
-
[7]
[7] H.T. Zhu, J.X. Wang, D.X. Wu, Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres, Inorg. Chem. 48 (2009) 7099-7104.
-
[8]
[8] Y. Zhao, H. Pan, Y. Lou, et al., Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides, J. Am. Chem. Soc. 131 (2009) 4253-4261.
-
[9]
[9] P. Kumar, M. Gusain, R. Nagarajan, Synthesis of Cu1.8S and CuS from copperthiourea containing precursors; anionic (Cl , NO3 , SO4 2 ) influence on the product stoichiometry, Inorg. Chem. 50 (2011) 3065-3070.
-
[10]
[10] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nmlaser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.
-
[11]
[11] N. Banerjee, S.B. Krupanidhi, Synthesis and structural characterization of two dimensional hierarchical covellite nano-structures, Mater. Chem. Phys. 137 (2012) 466-471.
-
[12]
[12] S. Xu, Q. Wang, J.H. Cheng, Q.H. Meng, Y. Jiao, Preparation and characteristics of porous CuS microspheres consisted of polycrystalline nanoslices, Powder Technol. 199 (2010) 139-143.
-
[13]
[13] M. Saranya, C. Santhosh, R. Ramachandran, et al., Hydrothermal growth of CuS nanostructures and its photocatalytic properties, Powder Technol. 252 (2014) 25-32.
-
[14]
[14] J. Li, T.G. Jiu, G.H. Tao, et al., Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells, J. Colloid Interface Sci. 419 (2014) 142-147.
-
[15]
[15] M. Kemmler, M. Lazell, P. O'Brien, et al., The growth of thin films of copper chalcogenide films by MOCVD and AACVD using novel single-molecule precursors, J. Mater. Sci. Mater. Electron. 13 (2002) 531-535.
-
[16]
[16] R. Kobayashi, T. Wada, S. Bakehe, R. Klenk, The effect of sulphur pressure on the depth distribution of elements in Cu(In,Ga)S2 films, Thin Solid Films 472 (2005) 71-75.
-
[17]
[17] R. Cordova, H. Gomez, R. Schrebler, et al., Electrosynthesis and electrochemical characterization of a thin phase of CuxS (x! 2) on ITO electrode, Langmuir 18 (2002) 8647-8654.
-
[18]
[18] M.T.S. Nair, P.K. Nair, Chemical bath deposition of CuxS thin films and their prospective large area applications, Semicond. Sci. Technol. 4 (1989) 191-199.
-
[19]
[19] K.M. Gadave, C.D. Lokhande, Formation of CuxS films through a chemical bath deposition process, Thin Solid Films 229 (1993) 1-4.
-
[20]
[20] T. Yamamoto, K. Tanaka, E. Kubota, K. Osakada, Deposition of copper sulfide on the surface of poly(ethylene terephthalate) and poly(vinyl alcohol) films in aqueous solution to give electrically conductive films Sxad, Chem. Mater. 5 (1993) 1352- 1357.
-
[21]
[21] R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys. 65 (2000) 1-31.
-
[22]
[22] Z. Tao, T. Zhan, T. Zhou, X. Zhao, Z. Li, Synthesis, properties, and self-assembly of 2,3-bis(n-octyl) hexaazatriphenylene, Chin. Chem. Lett. 24 (2013) 453-456.
-
[23]
[23] A.U. Ubale, Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method, Mater. Chem. Phys. 121 (2010) 555-560.
-
[24]
[24] S.C. Liufu, L.D. Chen, Q. Yao, F.Q. Huang, In situ assembly of CuxS quantum-dots into thin film: a highly conductive p-type transparent film, J. Phys. Chem. C 112 (2008) 12085-12088.
-
[25]
[25] S.R. Gadakh, C.H. Bhosale, Effect of concentration of complexing agent (tartaric acid) on the properties of spray deposited Sb2S3 thin films, Mater. Chem. Phys. 78 (2003) 367-371.
-
[26]
[26] S.B. Patil, A.K. Singh, Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films, Appl. Surf. Sci. 256 (2010) 2884-2889.
-
[27]
[27] K.W. Cheng, S.C. Wang, Effects of complex agents on the physical properties of Ag-In-S ternary semiconductor films using chemical bath deposition, Mater. Chem. Phys. 115 (2009) 14-20.
-
[28]
[28] M.B. Sigman, A. Ghezelbash, T. Hanrath, et al., Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets, J. Am. Chem. Soc. 125 (2003) 16050-16057.
-
[29]
[29] Y.J. Lu, X. Meng, G.W. Yi, J.H. Jia, In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition, J. Colloid Interface Sci. 356 (2011) 726-733.
-
[30]
[30] N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, T. Groth, Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies, Biomaterials 25 (2004) 2721-2730.
-
[31]
[31] Y.H. Chen, C.Y. Huang, F.D. Lai, et al., Electroless deposition of the copper sulfide coating on polyacrylonitrile with a chelating agent of triethanolamine and its EMI shielding effectiveness, Thin Solid Films 517 (2009) 4984-4988.
-
[32]
[32] M.D. Xin, K.W. Li, H. Wang, Synthesis of CuS thin films by microwave assisted chemical bath deposition, Appl. Surf. Sci. 256 (2009) 1436- 1442.
-
[33]
[33] I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov, M. Najdoski, Experimental study of the copper thiosulfate system with respect to thin-film deposition, Thin Solid Films 250 (1994) 67-71.
-
[34]
[34] S.V. Bagul, S.D. Chavhan, R. Sharma, Growth and characterization of CuxS (x=1.0, 1.76, and 2.0) thin films grown by solution growth technique (SGT), J. Phys. Chem. Solids 68 (2007) 1623-1629.
-
[35]
[35] J.J. Nairn, P.J. Shapiro, B. Twamley, et al., Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors, Nano Lett. 6 (2006) 1218-1223.
-
[36]
[36] D. Chen, Y.F. Gao, G. Wang, et al., Surface tailoring for controlled photoelectrochemical properties: effect of patterned TiO2 microarrays, J. Phys. Chem. C 111 (2007) 13163-13169.
-
[37]
[37] E. Elizalde, F. Rueda, On minority-carrier transport parameter determination in heterojunctions from spectral response measurements: the cases of chalcocite, djurleite and digenite, J Phys. D: Appl. Phys. 19 (1986) 1563-1574.
-
[1]
-
-
-
[1]
Weinan Hu , Li Li , Xinyu Wang , Yongqiang Zhang , Maoping Song , Linlin Shi , Xinqi Hao , Siyu Lu . Carbonized polymer dots: Illuminating synthesis pathways, optical frontiers, and photoelectronic breakthroughs. Chinese Chemical Letters, 2025, 36(11): 111612-. doi: 10.1016/j.cclet.2025.111612
-
[2]
Lingxin Li , Jing Hu , Chunjun Qin , Juntao Cai , Xiaopeng Zou , Guangzong Tian , Peter H. Seeberger , Jian Yin . Immunological evaluation of the autism-related bacterium Enterocloster bolteae capsular polysaccharide driven by chemical synthesis. Chinese Chemical Letters, 2025, 36(9): 110797-. doi: 10.1016/j.cclet.2024.110797
-
[3]
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
-
[4]
Shuying Li , Weiwei ZhuGe , Xuan Sun , Chongzhen Sun , Zhaojun Liu , Chenghe Xiong , Min Xiao , Guofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089
-
[5]
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
-
[6]
Yinghao Zhang , Ke Shao , Yihang Zhu , Haokun Zhang , Yinuo Zhuo , Huihui Bao , Yeye Ai , Yongguang Li . Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ) complexes for advanced information storage and anti-counterfeiting materials. Chinese Chemical Letters, 2025, 36(9): 110735-. doi: 10.1016/j.cclet.2024.110735
-
[7]
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
-
[8]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[9]
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
-
[10]
Rongjian Chen , Jiahui Liu , Caixia Lin , Yuanming Li , Yanhou Geng , Yaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074
-
[11]
Shuqi Chen , Cankun Zhang , Xiaonuo Dong , Hui-Jun Zhang , Jianbin Lin . Synthesis and photophysical properties of alternating donor-acceptor conjugated nanorings. Chinese Chemical Letters, 2025, 36(6): 110354-. doi: 10.1016/j.cclet.2024.110354
-
[12]
Mohamed Saber Lassoued , Faizan Ahmad , Yanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477
-
[13]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[14]
Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110
-
[15]
Zili Ma , Zeyu Li , Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450
-
[16]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[17]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[18]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[19]
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
-
[20]
Dan PENG , Hao WANG , Yanyan WANG , Hongpeng YOU , Wuping LIAO . Synthesis and fluorescent properties of a one-dimensional Tb-calixarene complex as a luminescent thermometer material. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1859-1866. doi: 10.11862/CJIC.20250128
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1178)
- HTML views(9)
Login In
DownLoad: