Citation: Ming-Hui He, Rui-Xin Xu, Guang-Xue Chen, Zhao-Hua Zeng, Jian-Wen Yang. A thioxanthone-based photocaged superbase for highly effective free radical photopolymerization[J]. Chinese Chemical Letters, ;2014, 25(11): 1445-1448. doi: 10.1016/j.cclet.2014.05.031 shu

A thioxanthone-based photocaged superbase for highly effective free radical photopolymerization

  • Corresponding author: Jian-Wen Yang, 
  • Received Date: 11 February 2014
    Available Online: 14 May 2014

    Fund Project: This research was financially supported by National Natural Science Foundation of China (No. 20974127, 21374135) (No. 20974127, 21374135) China Postdoctoral Science Foundation (No. 2013M542178) (No. 2013M542178) and the Fundamental Research Funds for the Central Universities (No. 2013ZB0025). (No. C713043z)

  • Thioxanthone-based N-phthalimidoamino acid ammonium salt (thioxanthen-DBU) as a photocaged base was synthesized and characterized. The photochemical properties and initiation mechanism were analyzed. It was found that the compound absorbs over the UV and visible region with relatively high absorption coefficients. Furthermore, the covalent binding of N-phthalimidoamino acid and type Ⅱ chromophores (thioxanthone, TX) remarkably improved the photoreactivity. Specifically, in combination with a benzoyl peroxide initiator, thioxanthen-DBU was able to initiate the amine-mediated redox photopolymerization of trimethylol propane triacrylate (TMPTA), and an excellent photopolymerization profile was obtained.
  • 加载中
    1. [1]

      [1] Y. Yagci, S. Jockusch, N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities, Macromolecules 43 (2010) 6245-6260.

    2. [2]

      [2] L. Gonsalvi, M. Peruzzini, Novel synthetic pathways for bis (acyl) phosphine oxide photoinitiators, Angew. Chem. Int. Ed. 51 (2012) 7895-7897.

    3. [3]

      [3] J.V. Crivello, E. Reichmanis, Photopolymer materials and processes for advanced technologies, Chem. Mater. 26 (2014) 533-548.

    4. [4]

      [4] Y.L. Xu, H.J. Xu, X.S. Jiang, J. Yin, Versatile functionalization of the micropatterned hydrogel of hyperbranched poly(ether amine) based on "thiol-yne" chemistry, Adv. Funct. Mater. 24 (2014) 1679-1686.

    5. [5]

      [5] M. Tehfe, F.E.D.E. Dumur, P. Xiao, et al., Chalcone derivatives as highly versatile photoinitiators for radical, cationic, thiol-ene and IPN polymerization reactions upon exposure to visible light, Polym. Chem. 5 (2014) 382-390.

    6. [6]

      [6] J.L. Yang, S.Q. Shi, F. Xu, J. Nie, Synthesis and photopolymerization kinetics of benzophenone sesamol one-component photoinitiator, Photochem. Photobiol. Sci. 12 (2013) 323-329.

    7. [7]

      [7] H. Tar, D. Sevinc Esen, M. Aydin, et al., Panchromatic type Ⅱ photoinitiator for free radical polymerization based on thioxanthone derivative, Macromolecules 46 (2013) 3266-3272.

    8. [8]

      [8] H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4]arenes via thiol-ene "click" chemistry, Chin. Chem. Lett. 24 (2013) 367-369.

    9. [9]

      [9] Y.Y. Cui, Y.E. Ren, X.X. Liu, Synthesis of methyl methacrylate star-branched polymer with divinylbenzene as a linking agent via controlled/living photopolymerization, Chin. Chem. Lett. 23 (2012) 985-988.

    10. [10]

      [10] M.H. He, X. Huang, Y.G. Huang, Z.H. Zeng, J.W. Yang, Photoinduced redox initiation for fast polymerization of acrylaytes based on latent superbase and peroxides, Polymer 53 (2012) 3172-3177.

    11. [11]

      [11] M.H. He, X. Huang, Z.H. Zeng, J.W. Yang, Photo-triggered redox frontal polymerization: a new tool for synthesizing thermally sensitive materials, J. Polym. Sci. A: Polym. Chem. 51 (2013) 4515-4521.

    12. [12]

      [12] M.H. He, X. Huang, Z.H. Zeng, J.W. Yang, Phototriggered base proliferation: a highly efficient domino reaction for creating functionally photo-screened materials, Macromolecules 46 (2013) 6402-6407.

    13. [13]

      [13] M.H. He, S. Jiang, R.X. Xu, et al., Domino free radical photopolymerization based on phototriggered base proliferation reaction and redox initiation, J. Polym. Sci. A: Polym. Chem. 52 (2014) 1560-1569.

    14. [14]

      [14] G. Yilmaz, B. Aydogan, G. Temel, et al., Thioxanthone-fluorenes as visible light photoinitiators for free radical polymerization, Macromolecules 43 (2010) 4520- 4526.

    15. [15]

      [15] D.K. Balta, G. Temel, G. Goksu, et al., Thioxanthone-diphenyl anthracene: visible light photoinitiator, Macromolecules 45 (2011) 119-125.

    16. [16]

      [16] D. Tunc, Y. Yagci, Thioxanthone-ethylcarbazole as a soluble visible light photoinitiator for free radical and free radical promoted cationic polymerizations, Polym. Chem. 2 (2011) 2557-2563.

    17. [17]

      [17] G. Yilmaz, S. Beyazit, Y. Yagci, Visible light induced free radical promoted cationic polymerization using thioxanthone derivatives, J. Polym. Sci. A: Polym. Chem. 49 (2011) 1591-1596.

    18. [18]

      [18] M.A. Tehfe, F. Dumur, B. Graff, et al., Design of new Type I and Type Ⅱ photoinitiators possessing highly coupled pyrene-ketone moieties, Polym. Chem. 4 (2013) 2313-2324.

    19. [19]

      [19] H.Y. Wang, J. Wei, X.S. Jiang, J. Yin, Highly efficient, polymerizable, sulfur-containing photoinitiator comprising a structure of planar N-phenylmaleimide and benzophenone for photopolymerization, J. Polym. Sci. A: Polym. Chem. 44 (2006) 3738-3750.

    20. [20]

      [20] H. Wang, J. Wei, X. Jiang, et al., Novel chemical-bonded polymerizable sulfurcontaining photoinitiators comprising the structure of planar N-phenylmaleimide and benzophenone for photopolymerization, Polymer 47 (2006) 4967- 4975.

    21. [21]

      [21] S.K. Dogruyol, Z. Dogruyol, N. Arsu, A thioxanthone-based visible photoinitiator, J. Polym. Sci. A: Polym. Chem. 49 (2011) 4037-4043.

    22. [22]

      [22] W. Fischer, Aromatic nucleophilic substitution. Part 3. Preparation of novel 9-oxo- 9H-thioxanthene-and 9-oxo-9H-xanthenedicarboximides and-dicarboxylates, Helv. Chim. Acta 74 (1991) 1119-1126.

    23. [23]

      [23] C.W. Miller, E.S. Jö nsson, C.E. Hoyle, K. Viswanathan, E.J. Valente, Evaluation of Naromatic maleimides as free radical photoinitiators: a photophysical and photopolymerization characterization, J. Phys. Chem. A 105 (2001) 2707-2717.

    24. [24]

      [24] Y. Takahashi, T. Miyashi, U.C. Yoon, et al., Mechanistic studies of the azomethine ylide-forming photoreactions of N-(silylmethyl) phthalimides and N-phthaloylglycine, J. Am. Chem. Soc. 121 (1999) 3926-3932.

    25. [25]

      [25] H.G.O. Rner, A.G. Griesbeck, T. Heinrich, et al., Time-resolved spectroscopy of sulfur-and carboxy-substituted N-alkylphthalimides, Chem. Eur. J. 7 (2001) 1530-1538.

    26. [26]

      [26] M. Aydin, N. Arsu, Y. Yagci, S. Jockusch, N.J. Turro, Mechanistic study of photoinitiated free radical polymerization using thioxanthone thioacetic acid as onecomponent type Ⅱ photoinitiator, Macromolecules 38 (2005) 4133-4138.

    27. [27]

      [27] M. Aydin, N. Arsu, Y. Yagci, One-component bimolecular photoinitiating systems, 2, Macromol. Rapid Commun. 24 (2003) 718-723.

    28. [28]

      [28] D.K. Balta, G. Temel, M. Aydin, N. Arsu, Thioxanthone based water-soluble photoinitiators for acrylamide photopolymerization, Eur. Polym. J. 46 (2010) 1374-1379.

  • 加载中
    1. [1]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    2. [2]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    3. [3]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    4. [4]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    5. [5]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    6. [6]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    7. [7]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    8. [8]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    9. [9]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    10. [10]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    11. [11]

      Jinlong LiRuixin LiJiahui LiuJi-Quan LiuJia XuXianglin ZhouYefan ZhangKairui WangLin LeiGang XieFengmei WangYing YangLiping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355

    12. [12]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    13. [13]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    14. [14]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    15. [15]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    16. [16]

      Renyuan WangLei KeHouxiang WangYueheng TaoYujie CuiPeipei ZhangMinjie ShiXingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920

    17. [17]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    18. [18]

      Li FuZiye SuShuyang WuYanfen ChengChuan HuJinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227

    19. [19]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

    20. [20]

      Wenjie MaYakun TangYue ZhangLang LiuBin TangDianzeng JiaYuliang Cao . Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries. Chinese Chemical Letters, 2025, 36(9): 110346-. doi: 10.1016/j.cclet.2024.110346

Metrics
  • PDF Downloads(0)
  • Abstract views(1267)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return