Citation: Ting-Ting Dai, Lei Liu, Dong-Liang Tao, Shi-Gang Li, Hong Zhang, Yu-Min Cui, Yong-Zhong Wanga, Ji-Tang Chen, Kun Zhang, Wen-Zhong Sun, Xiao-Yun Zhao. Influence of Gd doping on the absolute quantum efficiency and lifetime of EuxGd1-x(TTA)3phens[J]. Chinese Chemical Letters, ;2014, 25(6): 892-896. doi: 10.1016/j.cclet.2014.03.007 shu

Influence of Gd doping on the absolute quantum efficiency and lifetime of EuxGd1-x(TTA)3phens

  • Corresponding author: Dong-Liang Tao,  Shi-Gang Li, 
  • Received Date: 6 January 2014
    Available Online: 26 February 2014

    Fund Project: The Project is supported by the National Natural Science Foundation of China (No. 50973003) (No. 50973003)Natural Science Foundation of FuyangNormal College (Nos. 2011HJJC02ZD, 2011HJJC01ZD, 2011HJJC04YB, 2010FSKJ01ZD, 2013FSKJ03ZD) (Nos. KJ2012B135, KJ2012A217, KJ2012B136, KJ2011A210, 1301042112) Incubator Fund of Scientific and Technological achievements of Fuyang Normal College (Nos. 2013KJFH03, 2013KJFH01). (Nos. 2011HJJC02ZD, 2011HJJC01ZD, 2011HJJC04YB, 2010FSKJ01ZD, 2013FSKJ03ZD)

  • Absolute quantum yield (Φ) is one of the most important parameters to evaluate the potential of novel materials. Lanthanide complexes EuxGd1-x(TTA)3phens are synthesized with the ratio of Gd3+ dopant concentration ranging from 10% to 90% to improve the absolute quantum yield. EuxGd1-x(TTA)3phens possess similar infrared and ultraviolet spectra, showing that they have similar molecular structures. The absolute emission quantum yields of EuxGd1-x(TTA)3phens are determined using a fluoromax-4 spectrofluorometer equipped with an integrating sphere. The fluorescence lifetimes of the EuxGd1-x(TTA)3phens are measured in the same experiment. It was found that both absolute quantum yields and fluorescence lifetimes of EuxGd1-x(TTA)3phens are of quasi-periodic variation with the change of the Gd3+ dopant concentrations. The absolute quantum efficiency and fluorescence lifetime vary with respect to the Gd content in an opposite fashion, indicating that the rate of energy absorption by the EuxGd1-x(TTA)3phens and the conversion to light energy is critical for the absolute quantum efficiency. The radiative rate constant Kr and non-radiative rate constant Knr are calculated. The dependence of Kr and Knr on the Gd3+ dopant concentrations is very similar to that of absolute quantum efficiency. The radiation rate constant Kr and absolute quantum efficiency have a linear relationship.
  • 加载中
    1. [1]

      [1] J.L. Zhang, B.W. Chen, X. Luo, et al., Eu(III) complex-doped PMMA having fast radiation rate and high emission quantum efficiency, Chin. Chem. Lett. 23 (2012) 945-948.

    2. [2]

      [2] J.A. Zhao, S.F. Chen, D.D. Zhao, et al., The structure and luminescence properties of three complexes based on bifunctional imidazole-dicarboxylate connector, Chin. Chem. Lett. 24 (2013) 483-486.

    3. [3]

      [3] H. Ishidaa, S. Tobitab, Y. Hasegawac, et al., Recent advances in instrumentation for absolute emission quantum yield measurements, Coord. Chem. Rev. 254 (2010) 2449-2458.

    4. [4]

      [4] S. Liao, X.P. Yang, R.A. Jones, Self-assembly of luminescent hexanuclear lanthanide salen complexes, Cryst. Growth Des. 12 (2012) 970-974.

    5. [5]

      [5] N.N. Katia, A. Lecointre, M. Regueiro-Figueroa, C. Platas-Iglesias, L.J. Charbonnière, Nonmacrocyclic luminescent lanthanide complexes stable in biological media, Inorg. Chem. 50 (2011) 1689-1697.

    6. [6]

      [6] H.T. Minh-Huong, A.D. Jacques, M. Véronique, L. Isabelle, Sensitized emission of luminescent lanthanide complexes based on a phosphane oxide derivative, J. Phys. Chem. A 114 (2010) 3264-3269.

    7. [7]

      [7] T.S. Grimes, G.X. Tian, L.F. Rao, K.L. Nash, Optical spectroscopy study of organicphase lanthanide complexes in the TALSPEAK separations process, Inorg. Chem. 51 (2012) 6299-6307.

    8. [8]

      [8] M.Y. Su, L.L. Liu, T. Sun, Synthesis and fluorescence spectrum of the Eu complex and the Eu-L (L=La, Y, Yb, and Nd) complex with 1,2-phenylenedioxydiacetic acid and dibenzoylmethane, J. Mol. Sci. 28 (2012) 227-231.

    9. [9]

      [9] K. Kong, H.X. Zhang, R.J. Ma, et al., Synthesis, characterization and enhanced luminescence of terbium complexes with 2-pyrazinecarboxylic acid and butanedioic acid by inert-fluorescent lanthanide ions, J. Rare Earths 31 (2013) 32-36.

    10. [10]

      [10] Y. Hasegawa, M. Yamamuro, Y. Wada, et al., Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency, J. Phys. Chem. A 107 (2003) 1697-1702.

    11. [11]

      [11] K. Nakamura, Y. Hasegawa, H. Kawai, et al., Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands, J. Phys. Chem. A 111 (2007) 3029-3037.

    12. [12]

      [12] M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes, Phys. Chem. Chem. Phys. 4 (2002) 1542-1548.

  • 加载中
    1. [1]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    2. [2]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    3. [3]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    6. [6]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    7. [7]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    8. [8]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    9. [9]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    10. [10]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    11. [11]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    12. [12]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    13. [13]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    16. [16]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    17. [17]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    18. [18]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    19. [19]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    20. [20]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

Metrics
  • PDF Downloads(0)
  • Abstract views(801)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return