Citation: Tao You, Ke Chen, Fei-Hai Wang, Pi-Hong Li, Li-Yi Li, Zhi-Hao Wu, Kong-Hai Ni, Zhi-Qiang Zheng. Design, synthesis, and biological evaluation of N-hydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors[J]. Chinese Chemical Letters, ;2014, 25(3): 474-478. doi: 10.1016/j.cclet.2013.11.039 shu

Design, synthesis, and biological evaluation of N-hydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors

  • Corresponding author: Zhi-Qiang Zheng, 
  • Received Date: 28 August 2013
    Available Online: 7 November 2013

  • Novel histone deacetylase (HDAC) inhibitors 9a-1 were designed and synthesized by coupling the carboxyl group of salicylic acid (SA) with N-hydroxycinnamamides through various alkylol amines, and their in vitro biological activities were evaluated. The N-hydroxycinnamamide/SA hybrids 9b-f and 9h showed good to moderate anti-tumor activities. Notably, compound 9e had a greater potency, comparable to vorinostat (SAHA), in human colon carcinoma cells, which was probably, or at least partially, attributable to the positive effects of the chain length noted in alkylol amines. Furthermore, the HDAC inhibitory activities of 9e against Hela cell nuclear were also similar to that of vorinostat (SAHA), while the tested compounds 9c-f did not exhibit any isoform selectivity in the inhibition of HDACs. In addition, compound 9e could selectively inhibit tumor cells, but not inhibit non-tumor cell proliferation in vitro. Our findings suggest that the N-hydroxycinnamamide/SA hybrids may hold significant promise as therapeutic agents for the intervention of human cancers.
  • 加载中
    1. [1]

      [1] T.K. Kelly, D.D. de Carvalho, P.A. Jones, Epigenetic modifications as therapeutic targets, Nat. Biotechnol. 28 (2010) 1069-1078.

    2. [2]

      [2] L.P. Blair, Q. Yan, Epigenetic mechanisms in commonly occurring cancers, DNA Cell Biol. 31 (2012) S49-S61.

    3. [3]

      [3] H. Lehrmann, L.L. Pritchard, A. Harel-Bellan, et al., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation, Adv. Cancer. Res. 86 (2002) 41-65.

    4. [4]

      [4] O. Witt, H.E. Deubzer, T. Milde, I. Oehme, HDAC family: what are the cancer relevant targets, Cancer Lett. 277 (2009) 8-21.

    5. [5]

      [5] A.A. Lane, B.A. Chabner, Histone deacetylase inhibitors in cancer therapy, J. Clin. Oncol. 27 (2009) 5459-5468.

    6. [6]

      [6] B.E. Gryder, Q.H. Sodji, A.K. Oyelere, Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed, Future Med. Chem. 4 (2012) 505-524.

    7. [7]

      [7] P.A. Marks, The clinical development of histone deacetylase inhibitors as targeted anticancer drugs, Expert Opin. Invest. Drugs 19 (2010) 1049-1066.

    8. [8]

      [8] H.S. Wang, B.W. Dymock, New patented histone deacetylase inhibitors, Expert Opin. Ther. Pat. 19 (2009) 1727-1757.

    9. [9]

      [9] M. Paris, M. Porcelloni, M. Binaschi, D. Fattori, Histone deacetylase inhibitors: from bench to clinic, J. Med. Chem. 51 (2008) 1505-1529.

    10. [10]

      [10] P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene 26 (2007) 1351-1356.

    11. [11]

      [11] C. Campas-Moya, Romidepsin for the treatment of cutaneous T-cell lymphoma, Drugs Today 45 (2009) 787-795.

    12. [12]

      [12] P.A. Cassier, A. Lefranc, E.Y. Amela, et al., A phase Ⅱ trial of panobinostat in patients with advanced pretreated soft tissue sarcoma: a study from the French Sarcoma Group, Br. J. Cancer 19 (2013) 909-914.

    13. [13]

      [13] J.A. Plumb, P.W. Finn, R.J. Williams, et al., Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101, Mol. Cancer Ther. 2 (2003) 721-728.

    14. [14]

      [14] A.R. Razak, S.J. Hotte, L.L. Siu, et al., Phase I clinical, pharmacokinetic and pharmacodynamic study of SB939, an oral histone deacetylase (HDAC) inhibitor, in patients with advanced solid tumours, Br. J. Cancer 104 (2011) 756-762.

    15. [15]

      [15] C. Doñas, M. Fritz, V. Manríquez, et al., Trichostatin A promotes the generation and suppressive functions of regulatory T cells, Clin. Dev. Immunol. (2013) 679-804.

    16. [16]

      [16] K. Rao-Bindal, N.V. Koshkina, J. Stewart, et al., The histone deacetylase inhibitor, MS-275 (entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases, Curr. Cancer Drug Targets 13 (2013) 411-422.

    17. [17]

      [17] Y. Boumber, A. Younes, G. Garcia-Manero, Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor, Expert Opin. Investig. Drugs 20 (2011) 823-829.

    18. [18]

      [18] T.A. Miller, D.J. Witter, S. Belvedere, Histone deacetylase inhibitors, J. Med. Chem. 46 (2003) 5097-5116.

    19. [19]

      [19] Z.H. Zhao, M.H. Moghadasian, Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review, Food Chem. 109 (2008) 691-702.

    20. [20]

      [20] M.D. Lu, X. Zhou, Y.J. Yu, et al., Synthesis and in vitro biological evaluation of nitric oxide-releasing derivatives of hydroxylcinnamic acids as anti-tumor agents, Chin. Chem. Lett. 24 (2013) 415-418.

    21. [21]

      [21] A. Ghasemzadeh, H.Z. Jaafar, E. Karimi, Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties, Int. J. Mol. Sci. 13 (2012) 14828-14844.

    22. [22]

      [22] J. Sonnemann, I. Hü ls, M. Sigler, et al., Histone deacetylase inhibitors and aspirin interact synergistically to induce cell death in ovarian cancer cells, Oncol. Rep. 20 (2008) 219-224.

    23. [23]

      [23] The data of selected compounds. 9b: Yield 46%, mp 111-114 ℃; MS (ESI): m/z 387[M + H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.45 (s, 1H), 8.96 (s, 1H), 7.66-7.78 (m, 2H), 7.42 (d, 1H, J = 16.2 Hz), 6.78-7.12 (m, 5H), 6.38 (d, 1H, J = 16.2 Hz), 4.12 (t, 2H, J = 4.5 Hz), 3.83 (s, 3H), 3.62 (t, 2H, J = 4.5 Hz), 1.96-2.21 (m, 2H); Anal. Calcd. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25; Found: C, 62.28; H, 5.56; N, 7.13. 9c: Yield 52%, mp 102-104 ℃; MS (ESI): m/z 401 [M + H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.41 (s, 1H), 8.89 (s, 1H), 7.65-7.77 (m, 2H), 7.40 (d, 1H, J = 16.2 Hz), 6.73-7.15 (m, 5H), 6.35 (d, 1H, J = 16.2 Hz), 4.10 (t, 2H, J = 4.5 Hz), 3.80 (s, 3H), 3.59 (t, 2H, J = 4.5 Hz), 1.75-1.98 (m, 4H); Anal. Calcd. for C21H24N2O6: C, 62.99; H, 6.04; N, 7.00; Found: C, 62.85; H, 4.96; N, 7.13. 9d: Yield 38%, mp 119-122 ℃; MS (ESI): m/z 387 [M + H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.44 (s, 1H), 7.68-7.79 (m, 2H), 7.45 (d, 1H, J = 16.2 Hz), 6.79-7.21 (m, 5H), 6.39 (d, 1H, J = 16.2 Hz), 4.15 (t, 2H, J = 4.5 Hz), 3.84 (s, 3H), 3.65 (t, 2H, J = 4.5 Hz), 3.06 (s, 3H); Anal. Calcd. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25; Found: C, 62.03; H, 5.86; N, 7.17. 9e: Yield 47%, mp 108-111 ℃; MS (ESI): m/z 401 [M + H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.42 (s, 1H), 7.65-7.78 (m, 2H), 7.43 (d, 1H, J = 16.2 Hz), 6.76-7.19 (m, 5H), 6.37 (d, 1H, J = 16.2 Hz), 4.13 (t, 2H, J = 4.5 Hz), 3.81 (s, 3H), 3.64 (t, 2H, J = 4.5 Hz), 3.03 (s, 3H), 1.98-2.23 (m, 2H); Anal. Calcd. for C21H24N2O6: C, 62.99; H, 6.04; N, 7.00; Found: C, 63.07; H, 6.26; N, 7.16. 9f: Yield 55%, mp 103-106 ℃; MS (ESI): m/z 415[M + H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.47 (s, 1H), 7.63-7.77 (m, 2H), 7.40 (d, 1H, J = 16.2 Hz), 6.73-7.17 (m, 5H), 6.34 (d, 1H, J = 16.2 Hz), 4.10 (t, 2H, J = 4.5 Hz), 3.79 (s, 3H), 3.61 (t, 2H, J = 4.5 Hz), 3.02 (s, 3H), 1.78-2.02 (m, 4H); Anal. Calcd. for C22H26N2O6: C, 63.76; H, 6.32; N, 6.76; Found: C, 63.57; H, 6.56; N, 7.59. 9h: Yield 57%, mp 95-98 ℃; MS (ESI): m/z 415 [M + H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.39 (s, 1H), 7.59-7.75 (m, 2H), 7.38 (d, 1H, J = 16.2 Hz), 6.70-7.16 (m, 5H), 6.32 (d, 1H, J = 16.2 Hz), 4.07 (t, 2H, J = 4.5 Hz), 3.80 (s, 3H), 3.57 (t, 2H, J = 4.5 Hz), 3.00 (s, 3H), 1.95-2.22 (m, 2H); Anal. Calcd. for C22H26N2O6: C, 63.76; H, 6.32; N, 6.76; Found: C, 63.53; H, 6.48; N, 7.62.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    4. [4]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    5. [5]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    6. [6]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Chanqi YeJia ZhangJie ShenRuyin ChenQiong LiPeng ZhaoDong ChenJian Ruan . Attractive Pickering emulsion gel loaded with oxaliplatin and lactate dehydrogenase inhibitor increases the anti-tumor effect in hepatocellular carcinoma. Chinese Chemical Letters, 2025, 36(7): 110519-. doi: 10.1016/j.cclet.2024.110519

    10. [10]

      Huijuan ZhangChenglin LiangXinyi DingMeng ZhangSiyu LuLin Hou . Manganese-based nano-delivery system for sensitized anti-tumor immunotherapy via combined autophagy inhibition. Chinese Chemical Letters, 2025, 36(7): 110525-. doi: 10.1016/j.cclet.2024.110525

    11. [11]

      Rongrong ZhengZuxiao ChenQiuyuan LiNi YangWenjun ZhangChuyu HuangLinping ZhaoXin ChenHong ChengShiying Li . Endoplasmic reticulum targeting photodynamic oxidizer to boost anti-tumor immunity by intensifying immunogenic cell death in conjunction with IDO1 inhibition. Chinese Chemical Letters, 2025, 36(12): 110865-. doi: 10.1016/j.cclet.2025.110865

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    14. [14]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    15. [15]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    16. [16]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    17. [17]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    18. [18]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    19. [19]

      Nana YangRui YuanXinyue FuXiao TianJin YuShengzhou MaLiuqing WenJiabin Zhang . Concise synthesis of NDP-activated uronic acid by an oxidation reaction insertion strategy. Chinese Chemical Letters, 2025, 36(8): 110757-. doi: 10.1016/j.cclet.2024.110757

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(1038)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return