设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛

周昱晨 刘焕敏 李红星 宋欣妤 唐永华 周鹏

引用本文: 周昱晨, 刘焕敏, 李红星, 宋欣妤, 唐永华, 周鹏. 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛[J]. 物理化学学报, 2025, 41(6): 100067. doi: 10.1016/j.actphy.2025.100067 shu
Citation:  Yuchen Zhou,  Huanmin Liu,  Hongxing Li,  Xinyu Song,  Yonghua Tang,  Peng Zhou. Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde[J]. Acta Physico-Chimica Sinica, 2025, 41(6): 100067. doi: 10.1016/j.actphy.2025.100067 shu

设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛

  • 基金项目:

    北京大学深圳研究生院启动基金和国家自然科学基金优秀青年科学家项目资助,同时感谢曙光超级计算机中心对本文计算的支持

摘要: 光催化剂固有的表面原子构型,通常缺乏不稳定或难以生成的原子空位,这往往限制了金属单原子(MSA)助催化剂与光催化剂之间有效相互作用的形成,从而抑制了单原子光催化剂的稳定性和性能提升。在本研究中,我们提出了一种简便且经济的光化学氧还原反应(ORR)机制,用于在温和条件下(仅消耗水和氧气,压力为101325 Pa,温度为25 °C)在TiO2光催化剂上制备热力学稳定的贵金属单原子助催化剂。第一性原理模拟首次从理论上揭示了TiO2的固有表面构型仅能产生不稳定的Pt―O2结构。然而,TiO2上发生的ORR不仅能够提供一个外来氧与Pt单原子(PtSA)配位,还能诱导一个表面晶格氧向PtSA移动,从而促进热力学稳定的Pt―O4物种的形成,这一点通过在氧气氛围而非惰性氛围中实验合成TiO2上的PtSA得到了验证。所获得的稳定PtSA-TiO2光催化剂在共生产高纯度氢气和附加值乙醛时,表现出320.4 mmol·g-1·h-1的光催化速率,选择性高达99.65%,其活性是负载Pt纳米颗粒的TiO2的三倍。该策略进一步扩展至其他贵金属,如Rh和Pd。

English

    1. [1]

      A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2(2018) 65, https://doi.org/10.1038/s41570-018-0010-1A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2(2018) 65, https://doi.org/10.1038/s41570-018-0010-1

    2. [2]

      H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S. Q. Wei, J. L. Lu, J. Am. Chem. Soc. 137(2015) 10484, https://doi.org/10.1021/jacs.5b06485H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S. Q. Wei, J. L. Lu, J. Am. Chem. Soc. 137(2015) 10484, https://doi.org/10.1021/jacs.5b06485

    3. [3]

      Y. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang, X. Zhao, T. Lv, M. Thangamuthu, J. Zhang, Y. Guo, J. Ma, L. Lin, J. Tang, R. Huang, Q. Liu, Nat. Commun. 13(2022) 58, https://doi.org/10.1038/s41467-022-29799-zY. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang, X. Zhao, T. Lv, M. Thangamuthu, J. Zhang, Y. Guo, J. Ma, L. Lin, J. Tang, R. Huang, Q. Liu, Nat. Commun. 13(2022) 58, https://doi.org/10.1038/s41467-022-29799-z

    4. [4]

      Q. W. Song, G. C. He, H. L. Fei, Acta Phys. -Chim. Sin. 39(2023) 2212038, https://doi.org/10.3866/PKU.WHXB202212038Q. W. Song, G. C. He, H. L. Fei, Acta Phys. -Chim. Sin. 39(2023) 2212038, https://doi.org/10.3866/PKU.WHXB202212038

    5. [5]

      R. J. Zhu, L. L. Kang, L. Li, X. L. Pan, H. Wang, Y. Su, G. Y. Li, H. K. Cheng, R. G. Li, X. Y. Liu, A. Q. Wang, Acta Phys. -Chim. Sin. 40(2024) 2303003, https://doi.org/10.3866/PKU.WHXB202303003R. J. Zhu, L. L. Kang, L. Li, X. L. Pan, H. Wang, Y. Su, G. Y. Li, H. K. Cheng, R. G. Li, X. Y. Liu, A. Q. Wang, Acta Phys. -Chim. Sin. 40(2024) 2303003, https://doi.org/10.3866/PKU.WHXB202303003

    6. [6]

      Z.-Y. Wu, P. Zhu, D. A. Cullen, Y. Hu, Q.-Q. Yan, S.-C. Shen, F.-Y. Chen, H. Yu, M. Shakouri, J. D. Arregui-Mena, A. Ziabari, A. R. Paterson, H.-W. Liang, H. Wang, Nat. Syn. 1(2022) 658, https://doi.org/10.1038/s44160-022-00129-xZ.-Y. Wu, P. Zhu, D. A. Cullen, Y. Hu, Q.-Q. Yan, S.-C. Shen, F.-Y. Chen, H. Yu, M. Shakouri, J. D. Arregui-Mena, A. Ziabari, A. R. Paterson, H.-W. Liang, H. Wang, Nat. Syn. 1(2022) 658, https://doi.org/10.1038/s44160-022-00129-x

    7. [7]

      J. Chang, W. Jing, X. Yong, A. Cao, J. Yu, H. Wu, C. Wan, S. Wang, G. I. N. Waterhouse, B. Yang, Z. Tang, X. Duan, S. Lu, Nat. Syn. (2024) 1, https://doi.org/10.1038/s44160-024-00607-4J. Chang, W. Jing, X. Yong, A. Cao, J. Yu, H. Wu, C. Wan, S. Wang, G. I. N. Waterhouse, B. Yang, Z. Tang, X. Duan, S. Lu, Nat. Syn. (2024) 1, https://doi.org/10.1038/s44160-024-00607-4

    8. [8]

      X. Chen, S. Guan, J. Zhou, H. Shang, J. Zhang, F. Lv, H. Yu, H. Li, Z. Bian, Angew. Chem. Int. Ed. 62(2023) e202312734, https://doi.org/10.1002/anie.202312734X. Chen, S. Guan, J. Zhou, H. Shang, J. Zhang, F. Lv, H. Yu, H. Li, Z. Bian, Angew. Chem. Int. Ed. 62(2023) e202312734, https://doi.org/10.1002/anie.202312734

    9. [9]

      Z. H. Xue, D. Y. Luan, H. B. Zhang, X. W. Lou, Joule 6(2022) 92, https://doi.org/10.1016/j.joule.2021.12.011Z. H. Xue, D. Y. Luan, H. B. Zhang, X. W. Lou, Joule 6(2022) 92, https://doi.org/10.1016/j.joule.2021.12.011

    10. [10]

      X. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, Y. Xie, Adv. Mater. 28(2016) 2427, https://doi.org/10.1002/adma.201505281X. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, Y. Xie, Adv. Mater. 28(2016) 2427, https://doi.org/10.1002/adma.201505281

    11. [11]

      H. B. Zhang, C. F. Shao, Z. L. Wang, J. F. Zhang, K. Dai, J. Mater. Sci. Technol. 195(2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081H. B. Zhang, C. F. Shao, Z. L. Wang, J. F. Zhang, K. Dai, J. Mater. Sci. Technol. 195(2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081

    12. [12]

      C. G. Chen, J. F. Zhang, H. L. Chu, L. X. Sun, G. Dawson, K. Dai, Chinese J. Catal. 63(2024) 81, https://doi.org/10.1016/s1872-2067(24)60072-0C. G. Chen, J. F. Zhang, H. L. Chu, L. X. Sun, G. Dawson, K. Dai, Chinese J. Catal. 63(2024) 81, https://doi.org/10.1016/s1872-2067(24)60072-0

    13. [13]

      H. B. Zhang, Z. L. Wang, J. F. Zhang, K. Dai, Chinese J. Catal. 49(2023) 42, https://doi.org/10.1016/s1872-2067(23)64444-4H. B. Zhang, Z. L. Wang, J. F. Zhang, K. Dai, Chinese J. Catal. 49(2023) 42, https://doi.org/10.1016/s1872-2067(23)64444-4

    14. [14]

      J. Wang, Z. L. Wang, K. Dai, J. F. Zhang, J. Mater. Sci. Technol. 165(2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067J. Wang, Z. L. Wang, K. Dai, J. F. Zhang, J. Mater. Sci. Technol. 165(2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067

    15. [15]

      J. Wang, Z. L. Wang, J. F. Zhang, K. Dai, Chin. J. Struct. Chem. 42(2023) 100202, https://doi.org/10.1016/j.cjsc.2023.100202J. Wang, Z. L. Wang, J. F. Zhang, K. Dai, Chin. J. Struct. Chem. 42(2023) 100202, https://doi.org/10.1016/j.cjsc.2023.100202

    16. [16]

      S. Abbet, A. Sanchez, U. Heiz, W. D. Schneider, A. M. Ferrari, G. Pacchioni, N. Rösch, J. Am. Chem. Soc. 122(2000) 3453, https://doi.org/10.1021/ja9922476S. Abbet, A. Sanchez, U. Heiz, W. D. Schneider, A. M. Ferrari, G. Pacchioni, N. Rösch, J. Am. Chem. Soc. 122(2000) 3453, https://doi.org/10.1021/ja9922476

    17. [17]

      A. W. Peters, Z. Li, O. K. Farha, J. T. Hupp, ACS Nano 9(2015) 8484, https://doi.org/10.1021/acsnano.5b03429A. W. Peters, Z. Li, O. K. Farha, J. T. Hupp, ACS Nano 9(2015) 8484, https://doi.org/10.1021/acsnano.5b03429

    18. [18]

      L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 544(2017) 80, https://doi.org/10.1038/nature21672L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 544(2017) 80, https://doi.org/10.1038/nature21672

    19. [19]

      P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 352(2016) 797, https://doi.org/10.1126/science.aaf5251P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 352(2016) 797, https://doi.org/10.1126/science.aaf5251

    20. [20]

      P. X. Liu, Y. Zhao, R. X. Qin, S. G. Mo, G. X. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. D. Zang, B. H. Wu, G. Fu, N. F. Zheng, Science 352(2016) 797, https://doi.org/10.1126/science.aaf5251P. X. Liu, Y. Zhao, R. X. Qin, S. G. Mo, G. X. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. D. Zang, B. H. Wu, G. Fu, N. F. Zheng, Science 352(2016) 797, https://doi.org/10.1126/science.aaf5251

    21. [21]

      S. Kaushik, D. Wu, Z. Zhang, X. Xiao, C. Zhen, W. Wang, N. Y. Huang, M. Gu, Q. Xu, Adv. Mater. 36(2024) 2401163, https://doi.org/10.1002/adma.202401163S. Kaushik, D. Wu, Z. Zhang, X. Xiao, C. Zhen, W. Wang, N. Y. Huang, M. Gu, Q. Xu, Adv. Mater. 36(2024) 2401163, https://doi.org/10.1002/adma.202401163

    22. [22]

      H. H. Wei, K. Huang, D. Wang, R. Y. Zhang, B. H. Ge, J. Y. Ma, B. Wen, S. Zhang, Q. Y. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, H. Wu, Nat. Commun. 8(2017) 1490, https://doi.org/ARTN 149010.1038/s41467-017-01521-4H. H. Wei, K. Huang, D. Wang, R. Y. Zhang, B. H. Ge, J. Y. Ma, B. Wen, S. Zhang, Q. Y. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, H. Wu, Nat. Commun. 8(2017) 1490, https://doi.org/ARTN 149010.1038/s41467-017-01521-4

    23. [23]

      Y. Y. Cui, J. F. Zhang, H. L. Chu, L. X. Sun, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/pku.Whxb202405016Y. Y. Cui, J. F. Zhang, H. L. Chu, L. X. Sun, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/pku.Whxb202405016

    24. [24]

      Y. Q. Bian, H. W. He, G. Dawson, J. F. Zhang, K. Dai, Sci. China-Mater. 67(2024) 514, https://doi.org/10.1007/s40843-023-2725-yY. Q. Bian, H. W. He, G. Dawson, J. F. Zhang, K. Dai, Sci. China-Mater. 67(2024) 514, https://doi.org/10.1007/s40843-023-2725-y

    25. [25]

      X. T. Xu, C. F. Shao, J. F. Zhang, Z. L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2309031, https://doi.org/10.3866/pku.Whxb202309031X. T. Xu, C. F. Shao, J. F. Zhang, Z. L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2309031, https://doi.org/10.3866/pku.Whxb202309031

    26. [26]

      W. Xu, Y. Wang, H. He, J. Yang, Y. Yang, J. Ma, C. Li, T. Zhu, Appl. Catal. B-Environ. 345(2024) 123684, https://doi.org/10.1016/j.apcatb.2023.123684W. Xu, Y. Wang, H. He, J. Yang, Y. Yang, J. Ma, C. Li, T. Zhu, Appl. Catal. B-Environ. 345(2024) 123684, https://doi.org/10.1016/j.apcatb.2023.123684

    27. [27]

      Y. J. Zhang, Z. F. Xu, G. Y. Li, X. J. Huang, W. C. Hao, Y. P. Bi, Angew. Chem. Int. Ed. 58(2019) 14229, https://doi.org/10.1002/anie.201907954Y. J. Zhang, Z. F. Xu, G. Y. Li, X. J. Huang, W. C. Hao, Y. P. Bi, Angew. Chem. Int. Ed. 58(2019) 14229, https://doi.org/10.1002/anie.201907954

    28. [28]

      I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, E. Takeuchi, J. Mol. Catal. a-Chem. 161(2000) 205, https://doi.org/10.1016/s1381-1169(00)00362-9I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, E. Takeuchi, J. Mol. Catal. a-Chem. 161(2000) 205, https://doi.org/10.1016/s1381-1169(00)00362-9

    29. [29]

      Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 1(2018) 781, https://doi.org/10.1038/s41929-018-0146-xY. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 1(2018) 781, https://doi.org/10.1038/s41929-018-0146-x

    30. [30]

      C. Yuan, Y. Shen, C. Zhu, P. Zhu, F. Yang, J. Liu, C. An, ACS Sustainable Chem. Eng. 10(2022) 10311, https://doi.org/10.1021/acssuschemeng.2c02740C. Yuan, Y. Shen, C. Zhu, P. Zhu, F. Yang, J. Liu, C. An, ACS Sustainable Chem. Eng. 10(2022) 10311, https://doi.org/10.1021/acssuschemeng.2c02740

    31. [31]

      X. Tang, A. Yu, Q. Yang, H. Yuan, Z. Wang, J. Xie, L. Zhou, Y. Guo, D. Ma, S. Dai, J. Am. Chem. Soc. 146(2024) 3764, https://doi.org/10.1021/jacs.3c10659X. Tang, A. Yu, Q. Yang, H. Yuan, Z. Wang, J. Xie, L. Zhou, Y. Guo, D. Ma, S. Dai, J. Am. Chem. Soc. 146(2024) 3764, https://doi.org/10.1021/jacs.3c10659

    32. [32]

      A. S. Aricò, A. K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci. 172(2001) 33, https://doi.org/10.1016/s0169-4332(00)00831-xA. S. Aricò, A. K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci. 172(2001) 33, https://doi.org/10.1016/s0169-4332(00)00831-x

    33. [33]

      P. Zhou, Y. Chao, F. Lv, K. Wang, W. Zhang, J. Zhou, H. Chen, L. Wang, Y. Li, Q. Zhang, L. Gu, S. Guo, ACS Catal. 10(2020) 9109, https://doi.org/10.1021/acscatal.0c01192P. Zhou, Y. Chao, F. Lv, K. Wang, W. Zhang, J. Zhou, H. Chen, L. Wang, Y. Li, Q. Zhang, L. Gu, S. Guo, ACS Catal. 10(2020) 9109, https://doi.org/10.1021/acscatal.0c01192

    34. [34]

      P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 56(2019) 127, https://doi.org/10.1016/j.nanoen.2018.11.033P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 56(2019) 127, https://doi.org/10.1016/j.nanoen.2018.11.033

    35. [35]

      Z. Yu, S. Chuang, J. Catal. 246(2007) 118, https://doi.org/10.1016/j.jcat.2006.11.022Z. Yu, S. Chuang, J. Catal. 246(2007) 118, https://doi.org/10.1016/j.jcat.2006.11.022

    36. [36]

      A. Rismanchian, Y.-W. Chen, S. S. C. Chuang, Catal. Today 264(2016) 16, https://doi.org/10.1016/j.cattod.2015.07.038A. Rismanchian, Y.-W. Chen, S. S. C. Chuang, Catal. Today 264(2016) 16, https://doi.org/10.1016/j.cattod.2015.07.038

    37. [37]

      J. J. Murcia, M. C. Hidalgo, J. A. Navío, J. Araña, J. M. Doña-Rodríguez, Appl. Catal. B-Environ. 142(2013) 205, https://doi.org/10.1016/j.apcatb.2013.05.022J. J. Murcia, M. C. Hidalgo, J. A. Navío, J. Araña, J. M. Doña-Rodríguez, Appl. Catal. B-Environ. 142(2013) 205, https://doi.org/10.1016/j.apcatb.2013.05.022

    38. [38]

      K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 350(2015) 189, https://doi.org/10.1126/science.aac6368K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 350(2015) 189, https://doi.org/10.1126/science.aac6368

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  124
  • HTML全文浏览量:  23
文章相关
  • 收稿日期:  2025-01-18
  • 接受日期:  2025-02-17
  • 修回日期:  2025-02-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章