Citation: Hong-Ge Tan, Gang Xia, Li-Xiang Liu, Xiao-Hui Niu, Qing-Hai Hao. Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 394-402. doi: 10.1007/s10118-020-2351-8 shu

Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction


  • Author Bio:



    Hao, Q. H
  • Corresponding author: Hong-Ge Tan, thg@iccas.ac.cn
  • Received Date: 23 July 2019
    Revised Date: 28 August 2019
    Available Online: 8 November 2019

  • A tetrahedral polyelectrolyte brush in the presence of trivalent counterions is researched under the condition of good solution by means of molecular dynamics simulations. Grafting density and charge fraction are varied to generate a series of surface patterns. Lateral microphase separation happens and various interesting pinned patches appear at appropriate charge fraction and grafting density. Through a careful analysis on the brush thickness, the pair correlation functions, the distributions of net charge, and the four states of trivalent counterions in the brush, we find that the ordered surface patterns and special properties are induced by the pure electrostatic correlation effect of trivalent ions even in the good solvent. Furthermore, the dependences of electrostatic correlation on the charge fraction of tethered chains are evaluated for fixed grafting density. Also, our results can serve as a guide for precise control over the stimuli-responsive materials rational and self-assembly of nanoparticles.
  • 加载中
    1. [1]

      Rühe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Gröhn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; Motornov, M.; Netz, R. R.; Schmidt, M.; Seidel, C.; Stamm, M.; Stephan, T.; Usov, D.; Zhang, H. Polyelectrolyte brushes. Adv. Polym. Sci. 2004, 165, 79−150.

    2. [2]

      Hao, Q. H.; Zheng, Z.; Xia, G.; Tan, H. G. Brownian dynamics simulations of rigid polyelectrolyte chains grafting to spherical colloid. Chinese J. Polym. Sci. 2018, 36, 791−798.  doi: 10.1007/s10118-018-2042-x

    3. [3]

      Jaquet, B.; Wei, D.; Reck, B.; Reinhold, F.; Zhang, X. Y.; Wu, H.; Morbidelli, M. Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes. Colloid Polym. Sci. 2013, 291, 1659−1667.  doi: 10.1007/s00396-013-2900-6

    4. [4]

      Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y.; Hou, Z. Y.; Kang, X. J.; Li, C. X.; Lin, J. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 2013, 23, 4067−4078.  doi: 10.1002/adfm.201300136

    5. [5]

      Kreer, T. Polymer-brush lubrication: a review of recent theoretical advances. Soft Matter 2016, 12, 3479−3501.  doi: 10.1039/C5SM02919H

    6. [6]

      ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 2014, 134, 40576.

    7. [7]

      Zhulina, E.; Singh, C.; Balazs, A. C. Behavior of tethered polyelectrolytes in poor solvents. J. Chem. Phys. 1998, 108, 1175−1183.  doi: 10.1063/1.475498

    8. [8]

      Tagliazucchi, M.; Cruz, M. O. D. L.; Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci. 2010, 107, 5300−5305.  doi: 10.1073/pnas.0913340107

    9. [9]

      Tagliazucchi, M.; Calvo, E. J.; Szleifer, I. Molecular modeling of responsive polymer films. AIChE J. 2010, 56, 1952−1959.

    10. [10]

      Brettmann, B.; Pincus, P.; Tirrell, M. Lateral structure formation in polyelectrolyte brushes induced by multivalent ions. Macromolecules 2017, 50, 1225−1235.  doi: 10.1021/acs.macromol.6b02563

    11. [11]

      Günther, J. U.; Ahrens, H.; Förster, S.; Helm, C. A. Bundle formation in polyelectrolyte brushes. Phys. Rev. Lett. 2008, 101, 258303.  doi: 10.1103/PhysRevLett.101.258303

    12. [12]

      Yamada, T.; Kokado, K.; Higaki, Y.; Takahara, A.; Sada, K. Preparation and morphology variation of lipophilic polyelectrolyte brush functioning in nonpolar solvents. Chem. Lett. 2014, 43, 1300−1302.  doi: 10.1246/cl.140341

    13. [13]

      Bracha, D.; Bar-Ziv, R. H. Dendritic and nanowire assemblies of condensed DNA polymer brushes. J. Am. Chem. Soc. 2014, 136, 4945−4953.  doi: 10.1021/ja410960w

    14. [14]

      Yu, J.; Jackson, N. E.; Xu, X.; Brettmann, B. K.; Ruths, M.; Pablo, J. J. D.; Tirrell, M. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv. 2017, 3, 1497.  doi: 10.1126/sciadv.aao1497

    15. [15]

      Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis. Langmuir 2009, 25, 13158−13168.  doi: 10.1021/la901839j

    16. [16]

      He, G. L.; Merlitz, H.; Sommer, J. U. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: Origins of bundle formation. J. Chem. Phys. 2014, 140, 104911.  doi: 10.1063/1.4867466

    17. [17]

      Jackson, N. E.; Brettmann, B. K.; Vishwanath, V.; Tirrell, M.; Pablo, J. J. D. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes. ACS Macro Lett. 2017, 6, 155−160.  doi: 10.1021/acsmacrolett.6b00837

    18. [18]

      Sandberg, D. J.; Carrillo, J. M. Y.; Dobrynin A. V. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains. Langmuir 2007, 23, 12716−12728.  doi: 10.1021/la702203c

    19. [19]

      Samokhina, L.; Schrinner, M.; Ballauff, M. Binding of oppositely charged surfactants to spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. Langmuir 2007, 23, 3615−3619.  doi: 10.1021/la063178t

    20. [20]

      Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381−384.  doi: 10.1038/nature09713

    21. [21]

      Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 2006, 128, 9330−9331.  doi: 10.1021/ja063359h

    22. [22]

      Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L.; Xin, H. L.; Gang, O.; Zhulina, E. B.; Rubinstein, M.; Kumacheva, E. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79−83.  doi: 10.1038/nature19089

    23. [23]

      Kravchenko, V. S.; Potemkin, I. I. Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: from non-spherical vesicles to graphene-like sheets. Polymer 2018, 142, 23−32.  doi: 10.1016/j.polymer.2018.03.019

    24. [24]

      Ross, M. B.; Ku, J. C.; Vaccarezza. V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453−458.  doi: 10.1038/nnano.2015.68

    25. [25]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736−3827.  doi: 10.1021/cr1004452

    26. [26]

      Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1−19.  doi: 10.1006/jcph.1995.1039

    27. [27]

      Csajka, F. S.; Seidel, C. Strongly charged polyelectrolyte brushes: A molecular dynamics study. Macromolecules 2000, 33, 2728−2739.  doi: 10.1021/ma990096l

    28. [28]

      Hao, Q. H.; Xia, G.; Tan, H. G.; Chen, E. Q.; Yang, S. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Phys. Chem. Chem. Phys. 2018, 20, 26542−26551.  doi: 10.1039/C8CP04235G

    29. [29]

      Hoda, N.; Larson, R. G. Explicit- and implicit-solvent molecular dynamics simulations of complex formation between polycations and polyanions. Macromolecules 2009, 42, 8851−8863.  doi: 10.1021/ma901632c

    30. [30]

      Huißmann, S.; Likos, C. N.; Blaak, R. Explicit vs implicit water simulations of charged dendrimers. Macromolecules 2012, 45, 2562−2569.  doi: 10.1021/ma202520d

    31. [31]

      Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. Macromolecules 2011, 44, 5798−5816.  doi: 10.1021/ma2007943

    32. [32]

      Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: a molecular dynamics simulation. Macromolecules 1987, 20, 1376.  doi: 10.1021/ma00172a035

    33. [33]

      Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter 2016, 12, 4611−4620.  doi: 10.1039/C6SM00414H

    34. [34]

      Mei, Y.; Hoffmann, M.; Ballauff, M.; Jusufi, A. Spherical polyelectrolyte brushes in the presence of multivalent counterions: the effect of fluctuations and correlations as determined by molecular dynamics simulations. Phys. Rev. E 2008, 77, 031805.  doi: 10.1103/PhysRevE.77.031805

    35. [35]

      Jusufi, A.; Likos, C. N.; Löwen, H. Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. J. Chem. Phys. 2002, 116, 11011−11027.  doi: 10.1063/1.1480007

    36. [36]

      Pollock, E. L.; Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic coulombic systems. Comput. Phys. Commun. 1996, 95, 93−110.  doi: 10.1016/0010-4655(96)00043-4

    37. [37]

      Lane, J. M. D.; Grest, G. S. Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys. Rev. Lett. 2010, 104, 235501−235504.  doi: 10.1103/PhysRevLett.104.235501

    38. [38]

      Chi, P.; Li, B. H.; Shi, A. C. Conformation transitions of a polyelectrolyte chain: a replica-exchange Monte-Carlo study. Phys. Rev. E 2011, 84, 021804.

    39. [39]

      Chi, P.; Wang, Z.; Yin Y. H.; Li, B. H. Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent. Phys. Rev. E 2013, 87, 042608.  doi: 10.1103/PhysRevE.87.042608

  • 加载中
    1. [1]

      Xia XuGuiqian YangZhen ZhengCody J. WenthurJinyu LiGongyu Li . The sheet-to-helix transition is a potential gas-phase unfolding pathway for a multidomain protein CRM197. Chinese Chemical Letters, 2025, 36(7): 110401-. doi: 10.1016/j.cclet.2024.110401

    2. [2]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    5. [5]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    6. [6]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    7. [7]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    8. [8]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    9. [9]

      Zhimin SongZhe TangYu ZhangYanru ZhouXiaozheng DuanYan DuChong-Bo Ma . DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing. Chinese Chemical Letters, 2025, 36(10): 110680-. doi: 10.1016/j.cclet.2024.110680

    10. [10]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    11. [11]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    12. [12]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    13. [13]

      Qian LiuYi ShiKaiya WangXiao-Yu Hu . Tailoring cascade hydrolysis and cyclization efficiency in confined spaces via spatial and electrostatic regulation. Chinese Chemical Letters, 2025, 36(12): 111462-. doi: 10.1016/j.cclet.2025.111462

    14. [14]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    15. [15]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    16. [16]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    17. [17]

      Haozhi LeiQian XiaXiqiu WangYang SunWeihong Tan . Simulation of immune signal transduction through DNA strand displacement. Chinese Chemical Letters, 2025, 36(12): 110941-. doi: 10.1016/j.cclet.2025.110941

    18. [18]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    19. [19]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    20. [20]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

Metrics
  • PDF Downloads(0)
  • Abstract views(8148)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return