Citation: Meng-Qi Du, Yu-Zheng Peng, Yuan-Chi Ma, Li Yang, Yuan-Lin Zhou, Fan-Kun Zeng, Xiang-Ke Wang, Man-Ling Song, Guan-Jun Chang. Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 187-194. doi: 10.1007/s10118-019-2326-9 shu

Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers

  • Intermolecular synergistic adsorption of indole and carbonyl groups induced by intermolecular hydrogen bonding makes microporous organic polymer (PTICBL) exhibit high CO2 uptake capacity (5.3 mmol·g−1 at 273 K) and selectivities (CO2/CH4 = 53, CO2/N2 = 107 at 273 K). In addition, we find that indole units in the PTICBL networks inhibit the attachment of bacteria (E. coil and S. aureus) on the surface of PTICBL and extend its service life in CO2 capture.
  • 加载中
    1. [1]

      Tian, K.; Zhu, T. T.; Lan, P.; Wu, Z. C.; Hu, W.; Xie, F. F.; Li, L. Massive preparation of coumarone-indene resin-based hyper-crosslinked polymers for gas adsorption. Chinese J. Polym. Sci. 2018, 36, 1168−1174.  doi: 10.1007/s10118-018-2127-6

    2. [2]

      Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012, 484, 49−54.  doi: 10.1038/nature10915

    3. [3]

      Gan, C. J.; Xu, X. C.; Jiang, X. W.; Gan, F.; Dong, J.; Zhao, X.; Zhang, Q. H. Fabrication of 6FDA-HFBAPP polyimide asymmetric hollow fiber membranes and their CO2/CH4 separation properties. Chinese J. Polym. Sci. 2019, 37, 815−826.

    4. [4]

      Zhou, Z.; Anderson, C. M.; Butler, S. K.; Thompson, S. K.; Whitty, K. J.; Shen, T.; Stowers, K. J. Stability and efficiency of CO2 capture using linear amine polymer modified carbon nanotubes. J. Mater. Chem. A 2017, 5, 10486−10494.  doi: 10.1039/C7TA02576A

    5. [5]

      DeConto, R. M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591−597.  doi: 10.1038/nature17145

    6. [6]

      Wei, W.; Chang, G.; Xu, Y.; Yang, L. An indole-based conjugated microporous polymer: A new and stable lithium storage anode with high capacity and long life induced by cation-π interactions and a N-rich aromatic structure. J. Mater. Chem. A 2018, 6, 18794−18798.  doi: 10.1039/C8TA06194G

    7. [7]

      Wang, K.; Yang, L.; Wei, W.; Zhang, L.; Chang, G. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. J. Membr. Sci. 2018, 549, 23−27.  doi: 10.1016/j.memsci.2017.11.067

    8. [8]

      Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954−962.  doi: 10.1038/ncomms1956

    9. [9]

      Wang, R.; Moreno-Cruz, J.; Caldeira, K. Will the use of a carbon tax for revenue generation produce an incentive to continue carbon emissions? Environ. Res. Lett. 2017, 12, 6−14.

    10. [10]

      Chang, G.; Shang, Z.; Yu, T.; Yang, L. Rational design of a novel indole-based microporous organic polymer: enhanced carbon dioxide uptake via local dipole-π interactions. J. Mater. Chem. A 2016, 4, 2517−2523.  doi: 10.1039/C5TA08705H

    11. [11]

      Lee, H. M.; Youn, I. S.; Saleh, M.; Lee, J. W.; Kim, K. S. Interactions of CO2 with various functional molecules. Phys. Chem. Chem. Phys. 2015, 17, 10925−10933.  doi: 10.1039/C5CP00673B

    12. [12]

      Chang, G.; Xu, Y.; Zhang, L.; Yang, L. Enhanced carbon dioxide capture in an indole-based microporous organic polymer via synergistic effects of indoles and their adjacent carbonyl groups. Polym. Chem. 2018, 9, 4455−4459.  doi: 10.1039/C8PY00936H

    13. [13]

      Yang, L.; Chang, G.; Wang, D. High and selective carbon dioxide capture in nitrogen-containing aerogels via synergistic effects of electrostatic in-plane and dispersive π-π-stacking interactions. ACS Appl. Mater. Interfaces 2017, 9, 15213−15218.  doi: 10.1021/acsami.7b02077

    14. [14]

      Rabbani, M. G.; Reich, T. E.; Kassab, R. M.; Jackson, K. T.; El-Kaderi, H. M. High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem. Commun. 2012, 48, 1141−1143.  doi: 10.1039/C2CC16986J

    15. [15]

      Saleh, M.; Lee, H. M.; Kemp, K. C.; Kim, K. S. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl. Mater. Interfaces 2014, 6, 7325−7333.  doi: 10.1021/am500728q

    16. [16]

      Islamoglu, T.; Behera, S.; Kahveci, Z.; Tessema, T. D.; Jena, P.; El-Kaderi, H. M. Enhanced carbon dioxide capture from landfill gas using bifunctionalized benzimidazole-linked polymers. ACS Appl. Mater. Interfaces 2016, 8, 14648−14655.  doi: 10.1021/acsami.6b05326

    17. [17]

      Bazaka, K.; Jacob, M. V.; Crawford, R. J.; Ivanova, E. P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biot. 2012, 95, 299−311.  doi: 10.1007/s00253-012-4144-7

    18. [18]

      Arciola, C. R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J. W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33, 5967−5982.

    19. [19]

      Hasan, J.; Crawford, R. J.; Ivanova, E. P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295−304.  doi: 10.1016/j.tibtech.2013.01.017

    20. [20]

      Chen, M.; Wang, K.; Wang, C. Antifouling indole alkaloids of a marine-derived fungus Eurotium sp. Chem. Nat. Compd. 2018, 54, 207−209.  doi: 10.1007/s10600-018-2301-7

    21. [21]

      Fang, K.; Li, X.; Yu, L. Synthesis, antibacterial activity, and application in the antifouling marine coatings of novel acylamino compounds containing gramine groups. Prog. Org. Coat. 2018, 118, 141−147.  doi: 10.1016/j.porgcoat.2017.10.027

    22. [22]

      Feng, D.; He, J.; Chen, S.; Su, P.; Ke, C.; Wang, W. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: laboratory bioassays and field trials. Mar. Biotechnol. 2018, 20, 623−638.  doi: 10.1007/s10126-018-9834-4

    23. [23]

      Qi, S.; Ma, X. Antifouling compounds from marine invertebrates. Mar. Drugs 2017, 15, 263−282.  doi: 10.3390/md15090263

    24. [24]

      Guchhait, S. K.; Kashyap, M.; Kamble, H. ZrCl4-mediated regio- and chemoselective Friedel-Crafts acylation of indole. J. Org. Chem. 2011, 76, 4753−4758.  doi: 10.1021/jo200561f

    25. [25]

      Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44, 2410−2414.  doi: 10.1021/ma200630s

    26. [26]

      Saleh, M.; Baek, S. B.; Lee, H. M.; Kim, K. S. Triazine-based microporous polymers for selective adsorption of CO2. J. Phys. Chem. C 2015, 119, 5395−5402.  doi: 10.1021/jp509188h

    27. [27]

      Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V. Molecular level models for CO2 sorption in nanopores. Langmuir 1999, 15, 8736−8742.  doi: 10.1021/la990726c

    28. [28]

      Yang, P.; Yang, L.; Yang, J.; Luo, X.; Chang, G. Synthesis of a metal-coordinated N-substituted polybenzimidazole pyridine sulfone and method for the nondestructive analysis of thermal stability. High Perform. Polym. 2019, 31, 238−246.  doi: 10.1177/0954008318761109

    29. [29]

      Kizzie, A. C.; Wong-Foy, A. G.; Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 2011, 27, 6368−6373.  doi: 10.1021/la200547k

    30. [30]

      Liu, J.; Tian, J.; Thallapally, P. K.; McGrail, B. P. Selective CO2 capture from flue gas using metal-organic frameworks—a fixed bed study. J. Phys. Chem. C 2012, 116, 9575−9581.  doi: 10.1021/jp300961j

    31. [31]

      Song, G.; Zhu, X.; Chen, R.; Liao, Q.; Ding, Y. D.; Chen, L. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 2016, 283, 175−183.  doi: 10.1016/j.cej.2015.07.055

    32. [32]

      Lehn, J. M. Supramolecular polymer chemistry—scope and perspectives. Polym. Int. 2002, 51, 825−839.  doi: 10.1002/(ISSN)1097-0126

    33. [33]

      Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 2005, 30, 814−831.  doi: 10.1016/j.progpolymsci.2005.06.002

    34. [34]

      Fox, J. D.; Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules 2009, 42, 6823−6835.  doi: 10.1021/ma901144t

    35. [35]

      Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 2001, 101, 4071−4098.  doi: 10.1021/cr990125q

    36. [36]

      Balzer, C.; Cimino, R. T.; Gor, G. Y.; Neimark, A. V.; Reichenauer, G. Deformation of microporous carbons during N2, Ar, and CO2 adsorption: Insight from the density functional theory. Langmuir 2016, 32, 8265−8274.  doi: 10.1021/acs.langmuir.6b02036

    37. [37]

      Yang, P.; Yang, L.; Wang, Y.; Song, L.; Yang, J.; Chang, G. An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation-π interactions. J. Mater. Chem. A 2019, 7, 531−539.  doi: 10.1039/C8TA07326K

    38. [38]

      Wu, Q.; Chen, G.; Sun, W.; Xu, Z.; Kong, Y.; Zheng, X.; Xu, S. Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance. Chem. Eng. J. 2017, 313, 450−460.  doi: 10.1016/j.cej.2016.12.079

    39. [39]

      Xie, Y.; Tang, C.; Wang, Z.; Xu, Y.; Zhao, W.; Sun, S.; Zhao, C. Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J. Mater. Chem. B 2017, 5, 7186−7193.  doi: 10.1039/C7TB01516J

    40. [40]

      Zhang, X.; Shu, Y.; Su, S.; Zhu, J. One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle-triggered photo-catalytic degradation. Carbohyd. Polym. 2018, 181, 499−505.  doi: 10.1016/j.carbpol.2017.10.041

    41. [41]

      Zhang, X.; Zhang, J.; Yu, J.; Zhang, Y.; Cui, Z.; Sun, Y.; Hou, B. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl. Catal. B-Environ. 2018, 220, 57−66.  doi: 10.1016/j.apcatb.2017.07.074

    42. [42]

      Samantaray, P. K.; Madras, G.; Bose, S. PVDF/PBSA membranes with strongly coupled phosphonium derivatives and graphene oxide on the surface towards antibacterial and antifouling activities. J. Membr. Sci. 2018, 548, 203−214.  doi: 10.1016/j.memsci.2017.11.018

    43. [43]

      Bindhu, M. R.; Umadevi, M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta Part A 2015, 135, 373−378.  doi: 10.1016/j.saa.2014.07.045

  • 加载中
    1. [1]

      Xiujuan QiaoZhenying XuZhen WeiYiting HouFengxian GaoXijuan YuXiliang Luo . A wearable electrochemical biosensor based on antifouling and conducting polyaniline hydrogel for cortisol detection in sweat. Chinese Chemical Letters, 2025, 36(11): 110884-. doi: 10.1016/j.cclet.2025.110884

    2. [2]

      Sirui ChenRan ZhaoLi DongQilin LiuWei ChenDanna LiuMaosheng YeYingbo LiQiong NieJingxin MengShutao Wang . Smart antifouling coating integrating zwitterionic hydrogel with pH-responsive microcapsules for anti-crystal biofilm of orthodontic appliances. Chinese Chemical Letters, 2025, 36(12): 111647-. doi: 10.1016/j.cclet.2025.111647

    3. [3]

      Xianghua ZengWeichen MengXiaochun HanJiachen YangKaiqi WuFengxian GaoXiliang Luo . Highly stable and antifouling solid-contact ion-selective electrode for K+ detection in complex system based on multifunctional peptide and conductive MOF. Chinese Chemical Letters, 2025, 36(8): 110564-. doi: 10.1016/j.cclet.2024.110564

    4. [4]

      Hui-Xian JiangZhi-Tao LiuPei XuXu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    7. [7]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    8. [8]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    9. [9]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    14. [14]

      Xuan PanTao ShengZhanzhu Liu . A concise total synthesis of monoterpenoid indole alkaloid (-)-voacafricine A. Chinese Chemical Letters, 2025, 36(10): 110913-. doi: 10.1016/j.cclet.2025.110913

    15. [15]

      Feng-Fan YangYin-Kang DingLin-Kai WuJiayue TianShuai DouWenjing WangLinfeng Liang . A 1,3,5-triazine μ3-bridged neutral Cu(Ⅰ) framework with enhanced stability and CO2 capture selectivity. Chinese Chemical Letters, 2025, 36(12): 110550-. doi: 10.1016/j.cclet.2024.110550

    16. [16]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    17. [17]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    18. [18]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    19. [19]

      Cui XinZi-Jian ZhaoWei-Min He . Indole-quinoline transmutation enabled by a formal rhodium carbynoid. Chinese Chemical Letters, 2025, 36(11): 111583-. doi: 10.1016/j.cclet.2025.111583

    20. [20]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

Metrics
  • PDF Downloads(0)
  • Abstract views(2206)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return