Citation: Ya-Di Liu, Qiang Zhang, Xin-Hong Yu, Jian-Gang Liu, Yan-Chun Han. Increasing the Content of β Phase of Poly(9,9-dioctylfluorene) by Synergistically Controlling Solution Aggregation and Extending Film-forming Time[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 664-673. doi: 10.1007/s10118-019-2259-3 shu

Increasing the Content of β Phase of Poly(9,9-dioctylfluorene) by Synergistically Controlling Solution Aggregation and Extending Film-forming Time

  • Corresponding author: Jian-Gang Liu, niitawh@ciac.ac.cn Yan-Chun Han, ychan@ciac.ac.cn
  • Received Date: 25 January 2019
    Revised Date: 14 March 2019
    Available Online: 24 April 2019

  • For poly(9,9-dioctylfluorene) (PFO), β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favors charge carrier transport. However, the highest content of β phase obtained so far is 45%. We propose to increase the content of β phase by promoting the solution aggregation of PFO molecules and extending film-forming time. For this purpose, 1,8-diiodooctane (DIO) is added to PFO o-xylene solution, which enhances the interaction of PFO chains and improves the planarity of PFO backbone, resulting in the formation of ordered aggregation. The aggregates act as nucleation centers to promote the formation of β phase. The content of β phase increases with increasing DIO concentration and reaches a platform of 39% as DIO is more than 4 vol%. Furthermore, the film is kept in a sealed environment with o-xylene atmosphere for 3 h, thus the PFO molecules have enough time to diffuse to the crystallization front and achieve disorder-order transition. As a result, the crystallinity of PFO is improved significantly and the content of β phase increases to 52%, reaching the highest value reported so far.
  • 加载中
    1. [1]

      Zhang, Q.; Chi, L.; Hai, G.; Fang, Y.; Li, X.; Xia, R.; Huang, W.; Gu, E. An easy approach to control beta-phase formation in PFO films for optimized emission properties. Molecules 2017, 22, 315.  doi: 10.3390/molecules22020315

    2. [2]

      Wu, F. I.; Shih, P. I.; Shu, C. F.; Tung, Y. L.; Chi, Y. Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups. Macromolecules 2005, 38, 9028-9036.  doi: 10.1021/ma051842r

    3. [3]

      Peet, J.; Brocker, E.; Xu, Y.; Bazan, G. C. Controlled β phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Adv. Mater. 2008, 20, 1882-1885.  doi: 10.1002/adma.200702515

    4. [4]

      Chou, K. W.; Yan, B.; Li, R.; Li, E. Q.; Zhao, K.; Anjum, D. H.; Alvarez, S.; Gassaway, R.; Biocca, A.; Thoroddsen, S. T.; Hexemer, A.; Amassian, A. Spin-cast bulk heterojunction solar cells: A dynamical investigation. Adv. Mater. 2013, 25, 1923-1929.  doi: 10.1002/adma.v25.13

    5. [5]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324-1338.  doi: 10.1021/cr050149z

    6. [6]

      Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 2009, 3, 649-653.  doi: 10.1038/nphoton.2009.192

    7. [7]

      Wang, H.; Li, F.; Gao, B.; Xie, Z.; Liu, S.; Wang, C.; Hu, D.; Shen, F.; Xu, Y.; Shang, H. Doped organic crystals with high efficiency, color-tunable emission toward laser application. Cryst. Growth Des. 2009,9, 4945-4950.  doi: 10.1021/cg9007125

    8. [8]

      Schneider, D.; Rabe, T.; Riedl, T.; Dobbertin, T.; Werner, O.; Kröger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Weimann, T. Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative. Appl. Phys. Lett. 2004, 84, 4693-4695.  doi: 10.1063/1.1760227

    9. [9]

      Lin, J. Y.; Zhu, W. S.; Liu, F.; Xie, L. H.; Zhang, L.; Xia, R.; Xing, G. C.; Huang, W. A rational molecular design of β phase polydiarylfluorenes: Synthesis, morphology, and organic lasers. Macromolecules 2014, 47, 1001-1007.  doi: 10.1021/ma402585n

    10. [10]

      Liu, B.; Lin, J.; Liu, F.; Yu, M.; Zhang, X.; Xia, R.; Yang, T.; Fang, Y.; Xie, L.; Huang, W. A highly crystalline and wide-bandgap polydiarylfluorene with β-phase conformation toward stable electroluminescence and dual amplified spontaneous emission. ACS Appl. Mater. Interfaces 2016, 8, 21648-21655.  doi: 10.1021/acsami.6b05247

    11. [11]

      Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Self-dopant formation in poly(9,9-di-n-octylfluorene) via a dipping method for efficient and stable pure-blue electroluminescence. Adv. Mater. 2007, 19, 2574-2579.  doi: 10.1002/adma.200602632

    12. [12]

      Liang, J.; Yu, L.; Zhao, S.; Ying, L.; Liu, F.; Yang, W.; Peng, J.; Cao, Y. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology 2016, 27, 284001.  doi: 10.1088/0957-4484/27/28/284001

    13. [13]

      Teetsov, J.; Fox, M. A. Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes. J. Mater. Chem. 1999,9, 2117-2122.  doi: 10.1039/a902829c

    14. [14]

      Zhu, B.; Yang, H.; Minghao Sun, A.; Bo, Z. Water-soluble dendronized polyfluorenes with an extremely high quantum yield in water. Macromolecules 2007, 40, 4494-4500.  doi: 10.1021/ma062246f

    15. [15]

      Cho, H. J.; Jung, B. J.; Cho, N. S.; Lee, J.; Shim, H. K. Synthesis and characterization of thermally stable blue light-emitting polyfluorenes containing siloxane bridges. Macromolecules 2003, 36, 6704-6710.  doi: 10.1021/ma034622r

    16. [16]

      Wang, P. H.; Ho, M. S.; Yang, S. H.; Chen, K. B.; Hsu, C. S. Synthesis of thermal-stable and photo-crosslinkable polyfluorenes for the applications of polymer light-emitting diodes. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 516-524.  doi: 10.1002/(ISSN)1099-0518

    17. [17]

      Li, X.; Bai, Z.; Liu, B.; Li, T.; Lu, D. From starting formation to the saturation content of the β phase in poly(9,9-dioctylfluorene) toluene solutions. J. Phys. Chem. C 2017, 121, 14443-14450.  doi: 10.1021/acs.jpcc.7b03370

    18. [18]

      Huang, L.; Huang, X.; Sun, G.; Gu, C.; Lu, D.; Ma, Y. Study of β phase and chains aggregation degrees in poly(9,9-dioctylfluorene) (PFO) solution. J. Phys. Chem. C 2012, 116, 7993-7999.  doi: 10.1021/jp301102t

    19. [19]

      Chen, S.; Su, A.; Su, C.; Chen, S. Crystalline forms and emission behavior of poly (9,9-di-n-octyl-2,7-fluorene). Macromolecules 2005, 38, 379-385.  doi: 10.1021/ma048162t

    20. [20]

      Bradley, D. D. C.; Grell, M.; Long, X.; Mellor, H.; Grice, A. W.; Inbasekaran, M.; Woo, E. P. Influence of aggregation on the optical properties of a polyfluorene. Proc. SPIE 1997, 3145, 254-260.  doi: 10.1117/12.295530

    21. [21]

      Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Chain geometry, solution aggregation and enhanced dichroism in the liquidcrystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 1998, 49, 439-444.  doi: 10.1002/(ISSN)1521-4044

    22. [22]

      Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 1997, 9, 798-802.  doi: 10.1002/adma.19970091006

    23. [23]

      Perevedentsev, A.; Stavrinou, P. N.; Smith, P.; Bradley, D. D. C. Solution-crystallization and related phenomena in 9,9-dialkyl-fluorene polymers. II. Influence of side-chain structure. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492-1506.  doi: 10.1002/polb.23797

    24. [24]

      Liu, B.; Lin, J. Y.; Yu, M. N.; Li, B.; Xie, L.; Ou, C.; Feng, L.; Tao, L.; Dan, L.; Wei, H. Hereditary character of alkyl-chain length effect on β phase conformation from polydialkylfluorenes to bulky polydiarylfluorenes. J. Phys. Chem. C 2017, 121, 19087-19096  doi: 10.1021/acs.jpcc.7b06330

    25. [25]

      Liu, B.; Tao, L.; Hao, Z.; Ma, T.; Dan, L. Polyfluorene (PF) single-chain conformation, β conformation, and its stability and chain aggregation by side-chain length change in the solution dynamic process. J. Phys. Chem. C 2018, 122, 14814-14826.  doi: 10.1021/acs.jpcc.8b03504

    26. [26]

      Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32, 5810-5817.  doi: 10.1021/ma990741o

    27. [27]

      Yu, M. N.; Soleimaninejad, H.; Lin, J. Y.; Zuo, Z. Y.; Liu, B.; Bo, Y. F.; Bai, L. B.; Han, Y. M.; Smith, T. A.; Xu, M.; Wu, X. P.; Dunstan, D. E.; Xia, R. D.; Xie, L. H.; Bradley, D. D. C.; Huang, W. Photophysical and fluorescence anisotropic behavior of polyfluorene beta-conformation films. J. Phys. Chem. Lett. 2018, 9, 364-372.  doi: 10.1021/acs.jpclett.7b03148

    28. [28]

      Khan, A. L.; Sreearunothai, P.; Herz, L. M.; Banach, M. J.; Köhler, A. Morphology-dependent energy transfer within polyfluorene thin films. Phys. Rev. B 2004, 69, 085201.  doi: 10.1103/PhysRevB.69.085201

    29. [29]

      Bai, Z.; Liu, Y.; Li, T.; Li, X.; Liu, B.; Liu, B.; Lu, D. Quantitative study on β phase heredity based on poly(9,9-dioctylfluorene) from solutions to films and the effect on hole mobility. J. Phys. Chem. C 2016, 120, 27820-27828.  doi: 10.1021/acs.jpcc.6b08941

    30. [30]

      Yu, M. N.; Liu, B.; Lin, J. Y.; Tao, L.; Dan, L.; Feng, L.; Zhu, W. S. Nondilute 1,2-dichloroethane solution of poly(9,9-dioctylfluorene-2,7-diyl): A study on the aggregation process. Chinese J. Polym. Sci. 2016, 34, 1311-1318.  doi: 10.1007/s10118-016-1851-z

    31. [31]

      Yang, H.; Qu, K.; Li, H.; Cheng, H.; Zhang, J. An in situ investigation into the formation of the solvent-induced crystalline phase of poly(9,9-dioctylfluorene) in solvent vapor annealing. Macromol. Chem. Phys. 2016, 217, 1579-1585.  doi: 10.1002/macp.v217.14

    32. [32]

      Cadby, A.; Lane, P.; Mellor, H.; Martin, S.; Grell, M.; Giebeler, C.; Bradley, D. D. C.; Wohlgenannt, M.; An, C.; Vardeny, Z. Film morphology and photophysics of polyfluorene. Phys. Rev. B 2000, 62, 15604.  doi: 10.1103/PhysRevB.62.15604

    33. [33]

      Zhang, X.; Lei, Z.; Hu, Q.; Lin, J.; Chen, Y.; Xie, L.; Lai, W.; Huang, W. Stable pure-blue polymer light-emitting devices based on β phase poly(9,9-dioctylfluorene) induced by 1,2-dichloroethane. Appl. Phys. Express 2014, 7, 101601.  doi: 10.7567/APEX.7.101601

    34. [34]

      Bright, D. W.; Galbrecht, F.; Scherf, U.; Monkman, A. P. β phase formation in poly(9,9-di-n-decylfluorene) thin films. Macromolecules 2010, 43, 7860-7863.  doi: 10.1021/ma101570u

    35. [35]

      Li, T.; Liu, B.; Zhang, H.; Ren, J.; Bai, Z.; Li, X.; Ma, T.; Lu, D. Effect of conjugated polymer poly (9,9-dioctylfluorene) (PFO) molecular weight change on the single chains, aggregation and β phase. Polymer 2016, 103, 299-306.  doi: 10.1016/j.polymer.2016.09.072

    36. [36]

      Li, T.; Huang, L.; Bai, Z.; Li, X.; Liu, B.; Lu, D. Study on the forming condition and mechanism of the β conformation in poly(9,9-dioctylfluorene) solution. Polymer 2016, 88, 71-78.  doi: 10.1016/j.polymer.2016.02.015

    37. [37]

      Cheng, G.; Shi, T.; Bing, Y.; Liu, S.; Ying, L.; Wang, H.; Yang, S.; Hanif, M.; Dan, L.; Shen, F. Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance. Electrochim. Acta 2009, 54, 7006-7011.  doi: 10.1016/j.electacta.2009.07.023

    38. [38]

      Ng, M. F.; Sun, S. L.; Zhang, R. Q. A comparative study of optical properties of poly(9,9-dioctylfluorene) and poly(p-phenylenevinylene) oligomers. J. Appl. Phys. 2005, 97, 103513-103516.  doi: 10.1063/1.1897832

    39. [39]

      Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864-871.  doi: 10.1103/PhysRev.136.B864

    40. [40]

      Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997-1000.  doi: 10.1103/PhysRevLett.52.997

    41. [41]

      Hirata, S.; Lee, T. J.; Headgordon, M. Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene. J. Chem. Phys. 1999, 111, 8904-8912.  doi: 10.1063/1.480235

    42. [42]

      Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 1988, 37, 785-789.  doi: 10.1103/PhysRevB.37.785

    43. [43]

      Cao, X.; Du, Z.; Liang, C.; Zhao, K.; Li, H.; Liu, J.; Han, Y. Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution. Polymer 2017, 118, 135-142.  doi: 10.1016/j.polymer.2017.04.076

    44. [44]

      Liang, C.; Zhao, K.; Cao, X.; Liu, J.; Yu, X.; Han, Y. Nanowires of conjugated polymer prepared by tuning the interaction between the solvent and polymer. Polymer 2018, 149, 23-29.  doi: 10.1016/j.polymer.2018.06.068

    45. [45]

      Chen, L.; Zhao, K.; Cao, X.; Liu, J.; Yu, X.; Han, Y. Diketopyrrolopyrrole-based polymer fibrils formation by changing molecular conformation during film formation. J. Polym. Sci. Part B: Polym. Phys. 2018, 56, 1079-1086.  doi: 10.1002/polb.v56.15

    46. [46]

      Liang, C.; Chi, S.; Zhao, K.; Liu, J.; Yu, X.; Han, Y. Aligned films of the DPP-based conjugated polymer by solvent vapor enhanced drop casting. Polymer 2016, 104, 123-129.  doi: 10.1016/j.polymer.2016.10.005

    47. [47]

      Cao, X.; Chen, L.; Zhao, K.; Liu, J.; Han, Y. Diketopyrrolopyrrole-based polymer nanowires: Control of chain conformation and nucleation. J. Polym. Sci. Part B: Polym. Phys. 2018, 56, 833-841.  doi: 10.1002/polb.v56.11

    48. [48]

      Xu, Y.; Liu, J.; Wang, H.; Yu, X.; Xing, R.; Han, Y. Formation of parallel aligned nano-fibrils of a donor-acceptor conjugated copolymer via controlling J-aggregates and post treatment. Soft Matter 2013, 9,9849-9856.  doi: 10.1039/c3sm51986d

    49. [49]

      Wang, H. Y.; Liu, J. G.; Xu, Y. Z.; Yu, X. H.; Xu, R. B.; Han, Y. C. Ordered fibrillar morphology of donor-acceptor conjugated copolymers at multiple scales via blending with flexible polymers and solvent vapor annealing: Insight into photophysics and mechanism. Phys. Chem. Chem. Phys. 2014, 16, 1441-1450.  doi: 10.1039/C3CP53538J

    50. [50]

      Xu, Y.; Liu, J.; Wang, H.; Zheng, L.; Han, Y. Formation of parallel aligned nano-fibrils of poly(3,3′′′-didodecylquaterthiophene) induced by the unimer coils in solution. RSC Adv. 2013, 3, 12069-12074.  doi: 10.1039/c3ra40719e

    51. [51]

      Wang, H. Y.; Liu, J. G.; Xu, Y. Z.; Han, Y. C. Fibrillar morphology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: effects of conformational transition and conjugate length. J. Phys. Chem. B 2013, 117, 5996-6006.  doi: 10.1021/jp402039g

    52. [52]

      Bright, D. W.; Dias, F. B.; Galbrecht, F.; Scherf, U.; Monkman, A. P. The influence of alkyl-chain length on β-phase formation in polyfluorenes. Adv. Funct. Mater. 2009, 19, 67-73.  doi: 10.1002/adfm.v19:1

    53. [53]

      Dias, F. B.; Morgado, J.; Macanita, A. L.; da Costa, F. P.; Burrows, H. D.; Monkman, A. P. Kinetics and thermodynamics of poly (9,9-dioctylfluorene) β phase formation in dilute solution. Macromolecules 2006, 39, 5854-5864.  doi: 10.1021/ma0602932

    54. [54]

      Knaapila, M.; Bright, D. W.; Stepanyan, R.; Torkkeli, M.; Almásy, L.; Schweins, R.; Vainio, U.; Preis, E.; Galbrecht, F.; Scherf, U. Network structure of polyfluorene sheets as a function of alkyl side chain length. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2011, 83, 051803.  doi: 10.1103/PhysRevE.83.051803

    55. [55]

      Lin, Z. Q.; Shi, N. E.; Li, Y. B.; Qiu, D.; Zhang, L.; Lin, J. Y.; Zhao, J. F.; Wang, C.; Xie, L. H.; Huang, W. Preparation and characterization of polyfluorene-based supramolecular π-conjugated polymer gels. J. Phys. Chem. C 2011, 115, 4418-4424.  doi: 10.1021/jp109598y

    56. [56]

      Ariu, M.; Sims, M.; Rahn, M. D.; Hill, J.; Fox, A. M.; Lidzey, D. G.; Oda, M.; Cabanillas-Gonzalez, J.; Bradley, D. D. C. Exciton migration in β phase poly(9,9-dioctylfluorene). Phys. Rev. B 2003, 67, 195333.  doi: 10.1103/PhysRevB.67.195333

    57. [57]

      Montilla, F.; Ruseckas, A.; Samuel, I. D. W. Exciton-polaron interactions in polyfluorene films with β phase. J. Phys. Chem. C 2018, 122, 9766-9772.  doi: 10.1021/acs.jpcc.8b01300

    58. [58]

      Ling, H.; Lin, J.; Yi, M.; Liu, B.; Li, W.; Lin, Z.; Xie, L.; Bao, Y.; Guo, F.; Huang, W. Synergistic effects of self-doped nanostructures as charge trapping elements in organic field effect transistor memory. ACS Appl. Mater. Interfaces 2016, 8, 18969-18977.  doi: 10.1021/acsami.6b03792

    59. [59]

      Zhang, X.; Hu, Q.; Lin, J.; Lei, Z.; Guo, X.; Xie, L.; Lai, W.; Huang, W. Efficient and stable deep blue polymer light-emitting devices based on β phase poly(9,9-dioctylfluorene). Appl. Phys. Lett. 2013, 103, 153301.  doi: 10.1063/1.4824766

    60. [60]

      Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Morphology and structure of the β phase crystals of monodisperse polyfluorenes. Macromolecules 2013, 46, 3025-3030.  doi: 10.1021/ma400010f

    61. [61]

      Chen, S. H.; Su, A. C.; Chen, S. A. Noncrystalline phases in poly(9,9-di-n-octyl-2,7-fluorene). J. Phys. Chem. B 2005, 109, 10067.  doi: 10.1021/jp044079w

    62. [62]

      Chen, S. H.; Chou, H. L.; Su, A. C. Molecular packing in crystalline poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 2004, 37, 6833-6838.  doi: 10.1021/ma049346a

    63. [63]

      Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Control of crystal morphology in monodisperse polyfluorenes by solvent and molecular weight. J. Phys. Chem. B 2013, 117, 8880-8886.  doi: 10.1021/jp401261u

  • 加载中
    1. [1]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    2. [2]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    3. [3]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    4. [4]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    5. [5]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    6. [6]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    7. [7]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    8. [8]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    9. [9]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    10. [10]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    11. [11]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    12. [12]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    13. [13]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    14. [14]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    15. [15]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    16. [16]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    17. [17]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    18. [18]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    19. [19]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    20. [20]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return