Citation: Peng Cui, Chang-Tong Song, Xian-Hong Zhang, Dong Chen, Yu-Hong Ma, Wan-Tai Yang. Preparation of Ultralow Molecular Weight Poly(vinyl chloride) with Sub-micrometer Particles via Precipitation Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 646-653. doi: 10.1007/s10118-019-2252-x shu

Preparation of Ultralow Molecular Weight Poly(vinyl chloride) with Sub-micrometer Particles via Precipitation Polymerization

  • Poly(vinyl chloride), with ultralow molecular weight, produced by free radical polymerization either at high temperature or in the presence of chain transfer agents, is widely used as special resins and polymer process additives. This paper reports a new process, called self-stabilized precipitation polymerization, in which the polymerization of vinyl chloride monomer (VCM) is conducted in hydrocarbon diluents without addition of any suspending agent or emulsifier. The merits of this novel strategy include: (1) PVC resins with ultra-low number-average molecular weight (Mn) from 4000 to 15000, which is much lower than Mn of those prepared by conventional suspension and emulsion polymerizations, (2) sub-micrometer PVC particles with near spherical morphology, and (3) the very simple post-polymerization separation process. Under mild stirring, polymerization proceeds stably and smoothly. The influences of main process factors, such as solvents, initiator and monomer concentrations, polymerization time, and temperature on both particle morphology and Mn of the polymer products are investigated systematically. The molar ratio of ―CH2―CHCl―/―CH=CH―CH2CHCl, a good indicator of structural defects, is about 1000/0.1 which means the low molecular weights do not result from chain transfer to the monomers. Then the mechanism of this polymerization is proposed. In summary, this novel polymerization technology provides a straightforward method for preparing PVC particulate products with low Mn.
  • 加载中
    1. [1]

      Saeki, Y.; Emura, T. Technical progresses for PVC production. Prog. polym. sci. 2002, 27, 2055-2131.  doi: 10.1016/S0079-6700(02)00039-4

    2. [2]

      Brandrup, J.; Immergut, E. H. Polymer handbook. Wiley, New York, 1989.

    3. [3]

      Xu, X.; Guo, S. A Study on morphological structure of low molecular weight PVC prepared by vibromilling degradation. Polym. Plast. Technol. Eng. 1995, 34, 621-632.  doi: 10.1080/03602559508012208

    4. [4]

      Huang, Z.; Pan, P.; Bao, Y. Z. Solution and aqueous miniemulsion polymerization of vinyl chloride mediated by a fluorinated xanthate. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2092-2101.

    5. [5]

      Abreu, C. M.; Mendonça, P. V.; Serra, A. N. C.; Coelho, J. F.; Popov, A. V.; Gryn’ova, G.; Coote, M. L.; Guliashvili, T. Reversible addition-fragmentation chain transfer polymerization of vinyl chloride. Macromolecules 2012, 45, 2200-2208.  doi: 10.1021/ma300064j

    6. [6]

      Percec, V.; Popov, A. V.; Ramirez-castillo, E.; Weichold, O. Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/Tris (2-aminoethyl) amine or polyethyleneimine in water at 25 °C proceeds by a new competing pathways mechanism. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3283−3299.  doi: 10.1002/pola.10937

    7. [7]

      Smallwood, P. The formation of grains of suspension poly(vinyl chloride). Polymer 1986, 27, 1609-1618.  doi: 10.1016/0032-3861(86)90112-6

    8. [8]

      Georgiadou, S.; Thomas, N.; Gilbert, M.; Brooks, B. Nonaqueous polymerization of vinyl chloride: an environmentally friendly process. J. Appl. Polym. Sci. 2009, 112, 2472-2481.  doi: 10.1002/app.v112:4

    9. [9]

      Balakrishnan, T.; Ford, W. T. Particle size control in suspension copolymerization of styrene, chloromethylstyrene, and divinylbenzene.J. Appl. Polym. Sci .1982, 27, 133-138.  doi: 10.1002/app.1982.070270115

    10. [10]

      Negre, M.; Bartholin, M.; Guyot, A. Functionalized resins, 1. Gel and macroporous chloromethylated styrenic resins prepared in the presence of toluene as a pore forming agent. Die Angew. Makromol. Chem. 1982, 106, 67-77.  doi: 10.1002/apmc.1982.051060106

    11. [11]

      Chonde, Y.; Liu, L. J.; Krieger, I. M. Preparation and surface modification of poly(vinylbenzyl chloride) latices. J. Appl. Polym. Sci. 1980, 25, 2407-2416.  doi: 10.1002/app.1980.070251025

    12. [12]

      Prince, K. Water dilutable secondary stabilisers in suspension polymerisation of vinyl chloride monomer. Plast Rubber Compos. 1999, 28, 105-108.  doi: 10.1179/146580199101540187

    13. [13]

      Sperling, L. H. Introduction to physical polymer science. John Wiley & Sons, 2005.

    14. [14]

      Machleidt, R., The meson theory of nuclear forces and nuclear structure. in Advances in nuclear physics, Vol 19, ed. by Negele, J. W.; Vogt, E. Springer, Boston, MA, 1989, p. 189−376.

    15. [15]

      Bao, Y.; Brooks, B. Particle features of poly(vinyl chloride) resins prepared by a new heterogeneous polymerization process. J. Appl. Polym. Sci. 2003, 90, 954-958.  doi: 10.1002/app.12685

    16. [16]

      Butters, G. Particulate nature of PVC: Formation, structure and processing. Applied Science Publishers, 1982.

    17. [17]

      Xie, T.; Hamielec, A.; Wood, P.; Woods, D. Suspension, bulk, and emulsion polymerization of vinyl chloride-mechanism, kinetics, and reactor modelling. J. Vinyl Techn. 1991, 13, 2-25.  doi: 10.1002/(ISSN)1548-0585

    18. [18]

      Yuan, H.; Kalfas, G.; Ray, W. Suspension polymerization. J. Macromol. Sci., Part C: Polym. Rev. 1991, 31, 215-299.  doi: 10.1080/15321799108021924

    19. [19]

      Cebollada, A.; Schmidt, M.; Farber, J.; Capiati, N.; Valles, E. Suspension polymerization of vinyl chloride. Ⅰ. Influence of viscosity of suspension medium on resin properties. J. Appl. Polym. Sci. 1989, 37, 145-166.  doi: 10.1002/app.1989.070370111

    20. [20]

      Freidlina, R. K.; Velichko, F.; Zlotskii, S.; Rakhmankulov, D.; Terent’ev, A. B. Radical telomerization. Khimiya, Moscow, 1988.

    21. [21]

      Mickley, H. S.; Michaels, A. S.; Moore, A. L. Kinetics of precipitation polymerization of vinyl chloride. J. Polym. Sci. 1962, 60, 121-140.  doi: 10.1002/pol.1962.1206017006

    22. [22]

      Kronman, A.; Groshev, G.; Leshina, L.; Sitnikova, E.; Sulina, T. Polymerization of vinyl chloride in the presence of alcohols. Russion. J. Appl. Chem. 2001, 74, 1007-1009.  doi: 10.1023/A:1013007810113

    23. [23]

      Xing, C. M.; Yang, W. T. A novel, facile method for the preparation of uniform, reactive maleic anhydride/vinyl acetate copolymer micro- and nanospheres. Macromol. Rapid Comm. 2004, 25, 1568-1574.  doi: 10.1002/(ISSN)1521-3927

    24. [24]

      Xing, C. M.; Yang, W. T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. Ⅰ. Effects of principal factors on microspheres. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3760-3770.  doi: 10.1002/pola.20871

    25. [25]

      Xing, C. M.; Yu, Y.; Yang, W. T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. Ⅱ. polymerization features. Macromol. Chem. Phys. 2006, 207, 621-626.  doi: 10.1002/macp.200500527

    26. [26]

      Liu, Z. J.; Chen, D.; Zhang, J. f.; Liao, H. D.; Chen, Y. Z.; Sun, Y. F.; Deng, J. Y.; Yang, W. T. Self-stabilized precipitation polymerization and its application. Research 2018, 2018, 1-12.

    27. [27]

      Luo, W.; Liu, J. X.; Ma, Y. H.; Zhang, B.; Yang, W. T. Preparation of polymer nanoparticles from renewable biobased furfuryl alcohol and maleic anhydride by stabilizer-free dispersion polymerization. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3606-3617.  doi: 10.1002/pola.v50.17

    28. [28]

      Ramram, M. B.; Chen, D.; Ma, Y.; Wang, L.; Yang, W. Stabilizer-free precipitation copolymerization of renewable bio-based α-methylene-γ-butyrolactone and styrene. J. Macromol. Sci., Part A 2016, 53, 484-491.  doi: 10.1080/10601325.2016.1189281

    29. [29]

      Barclay, L. Formation and structure of PVC particles. Angew. Makromol. Chem.: Appl. Macromol. Chem. Phys. 1976, 52, 1-20.

    30. [30]

      Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W. Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci., Part A: Polym. Chem. 1986, 24, 2995-3007.  doi: 10.1002/pola.1986.080241126

    31. [31]

      Thomson, B.; Rudin, A.; Lajoie, G. Dispersion copolymerization of styrene and divinylbenzene: synthesis of monodisperse, uniformly crosslinked particles. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 345-357.  doi: 10.1002/pola.1995.080330301

    32. [32]

      Zhang, F.; Bai, Y. W.; Ma, Y. H.; Yang, W. T. Preparing of monodisperse and cation-charged polystyrene particles stabilized with polymerizable quarternary ammonium by dispersion polymerization in a methanol-water medium. J. Colloid Interf. Sci. 2009, 334, 13-21.  doi: 10.1016/j.jcis.2009.02.040

    33. [33]

      Yan, Q.; Bai, Y. W.; Meng, Z.; Yang, W. T. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinyl benzene) microspheres. J. Phys. Chem. B 2008, 112, 6914-6922.  doi: 10.1021/jp711324a

    34. [34]

      Chatelain, J. Two stage bulk polymerisation process of vinyl chloride. British polym. J. 1973, 5,457-465.  doi: 10.1002/(ISSN)1934-256X

    35. [35]

      Bao, Y. Z.; Brooks, B. W. Phase‐equilibrium behavior of vinyl chloride/n‐butane and its application in determination of vinyl chloride heterogeneous polymerization kinetics. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2179-2188.  doi: 10.1002/pola.1194.abs

    36. [36]

      Bao, Y. Z.; Brooks, B. W. Influences of some polymerization conditions on particle properties of suspension poly(vinyl chloride) resin. J. Appl. Polym. Sci. 2002, 85, 1544-1552.  doi: 10.1002/app.10786

    37. [37]

      Abreu, C. M. R.; Mendonça, P. V.; Serra, A. C.; Noble, B. B.; Guliashvili, T.; Nicolas, J.; Coote, M. L.; Coelho, J. F. J. Nitroxide-mediated polymerization of vinyl chloride at low temperature: kinetic and computational studies. Macromolecules 2016, 49, 490-498.  doi: 10.1021/acs.macromol.5b02017

    38. [38]

      Hansen, F. K.; Ugelstad, J. Particle nucleation in emulsion polymerization. Ⅱ. Nucleation in emulsifier-free systems investigated by seed polymerization. Polym. Sci.: Polym. Chem. 1979, 17, 3033-3045.  doi: 10.1002/pol.1979.170171001

    39. [39]

      Goodall, A. R.; Wilkinson, M. C.; Hearn, J. Mechanism of emulsion polymerization of styrene in soap-free systems. J. Polym. Sci.: Polym. Chem. 1977, 15, 2193-2218.  doi: 10.1002/pol.1977.170150912

    40. [40]

      Hansen, F. K.; Ugelstad, J. Particle nucleation in emulsion polymerization. Ⅰ. A theory for homogeneous nucleation. J. Polym. Sci., Polym. Chem. Ed. 1978, 16, 1953-1979.  doi: 10.1002/pol.1978.170160814

    41. [41]

      Shen, S.; Sudol, E. D.; El-Aasser, M. S. Dispersion polymerization of methyl methacrylate: Mechanism of particle formation. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1087-1100.  doi: 10.1002/pola.1994.080320611

    42. [42]

      Xu, J.; Jung, K.; Boyer, C. Oxygen tolerance study of photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization mediated by Ru(bpy)3Cl2. Macromolecules 2014, 47, 4217-4229.  doi: 10.1021/ma500883y

  • 加载中
    1. [1]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    2. [2]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    3. [3]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    4. [4]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    5. [5]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    6. [6]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    7. [7]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    8. [8]

      Liang LouXuncheng LiuYuanyu WangTao HuZhongjie WangHouqiang ShiJunkai XiongSiqi JingLiankang YeQihui GuoXiang Ge . Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient. Chinese Chemical Letters, 2025, 36(5): 109726-. doi: 10.1016/j.cclet.2024.109726

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    11. [11]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    12. [12]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    13. [13]

      Jinhui XuYanting ZhangKecheng WenXinyu WangZhiwei YangYuan HuangGuozhong ZhengLupeng HuangJing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240

    14. [14]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    15. [15]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    16. [16]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    17. [17]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    18. [18]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    19. [19]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    20. [20]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

Metrics
  • PDF Downloads(0)
  • Abstract views(994)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return