Citation: Ke-Cheng Yang, Feng-Chao Cui, Ce Shi, Wen-Duo Chen, Yun-Qi Li. Evolution of Conformation and Dynamics of Solvents in Hydration Shell along the Urea-induced Unfolding of Ubiquitin[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 708-718. doi: 10.1007/s10118-019-2238-8 shu

Evolution of Conformation and Dynamics of Solvents in Hydration Shell along the Urea-induced Unfolding of Ubiquitin

  • Corresponding author: Feng-Chao Cui, fccui@ciac.ac.cn Yun-Qi Li, yunqi@ciac.ac.cn
  • Received Date: 24 December 2018
    Revised Date: 18 January 2019
    Available Online: 14 March 2019

  • A clear diagram for the unfolding of protein induced by denaturant is a classical but still unsolved challenge. To explore the unfolded conformations of ubiquitin under different urea concentrations, we performed hybrid Monte Carlo-molecular dynamics simulations (MC-MD) guided by small angle X-ray scattering (SAXS) structural information. Conformational ensembles sampled by the hybrid MC-MD algorithm exhibited typical 3D structures at different urea concentrations. These typical structures suggested that ubiquitin was subjected to a sequential unfolding, where the native contacts between adjacent β-sheets at first were disrupted together with the exposure of hydrophobic core, followed by the conversion of remaining β-strands and helices into random coils. Ubiquitin in 8 mol·L−1 urea is almost a random coil. With the disruption of native structure, urea molecules are enriched at protein hydrated layer to stabilize newly exposed residues. Compared with water, urea molecules prefer to form hydrogen bonds with the backbone of ubiquitin, thus occupying nodes of the hydrogen bonding network that construct the secondary structure of proteins. Meanwhile, we also found that the slow dynamics of urea molecules was almost unchanged while the dynamics of water was accelerated in the hydration shell when more residues were unfolded and exposed. The former was also responsible for the stabilization of unfolded structures.
  • 加载中
    1. [1]

      Schlesinger, D. H.; Goldstein, G. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature 1975, 255, 423-424.  doi: 10.1038/255423a0

    2. [2]

      Goldstein, G.; Scheid, M.; Hammerling, U.; Schlesinger, D. H.; Niall, H. D.; Boyse, E. A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11-5.  doi: 10.1073/pnas.72.1.11

    3. [3]

      Hershko, A.; Eytan, E.; Ciechanover, A.; Haas, A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 1982, 257, 13964-70.

    4. [4]

      Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 1987, 194, 531-544.  doi: 10.1016/0022-2836(87)90679-6

    5. [5]

      Sillitoe, I.; Lewis, T. E.; Cuff, A.; Das, S.; Ashford, P.; Dawson, N. L.; Furnham, N.; Laskowski, R. A.; Lee, D.; Lees, J. G.; Lehtinen, S.; Studer, R. A.; Thornton, J.; Orengo, C. A. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2015, 43, D376-D381.  doi: 10.1093/nar/gku947

    6. [6]

      Reddy, G.; Thirumalai, D. Collapse precedes folding in denaturant-dependent assembly of ubiquitin. J. Phys. Chem. B 2017, 121, 995-1009.  doi: 10.1021/acs.jpcb.6b13100

    7. [7]

      Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. Atomic-level description of ubiquitin folding. Proc. Natl. Acad. Sci. USA 2013, 110, 5915-5920.  doi: 10.1073/pnas.1218321110

    8. [8]

      Makhatadze, G. I.; Lopez, M. M.; Richardson, J. M.; Thmos, S. T. Anion binding to the ubiquitin molecule. Protein Sci. 1998, 7, 689-697.  doi: 10.1002/pro.5560070318

    9. [9]

      Jacob, J.; Krantz, B.; Dothager, R. S.; Thiyagarajan, P.; Sosnick, T. R. Early collapse is not an obligate step in protein folding. J. Mol. Biol. 2004, 338, 369-82.  doi: 10.1016/j.jmb.2004.02.065

    10. [10]

      Wirmer, J.; Peti, W.; Schwalbe, H. Motional properties of unfolded ubiquitin: a model for a random coil protein. J. Biomol. NMR 2006, 35, 175-186.

    11. [11]

      Walters, J.; Milam, S. L.; Clark, A. C. Practical approaches to protein folding and assembly: Spectroscopic strategies in thermodynamics and kinetics. In Methods Enzymol., ed. by Michael L. Johnson, J. M. H., Gary K. Ackers, Academic Press, 2009, Vol. 455, pp. 1-39.

    12. [12]

      Vallée-Bélisle, A.; Michnick, S. W. Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis. Nat. Struct. Mol. Biol. 2012, 19, 731-736.  doi: 10.1038/nsmb.2322

    13. [13]

      Aznauryan, M.; Delgado, L.; Soranno, A.; Nettels, D.; Huang, J. R.; Labhardt, A. M.; Grzesiek, S.; Schuler, B. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc. Natl. Acad. Sci. USA 2016, 113, E5389-E5398.  doi: 10.1073/pnas.1607193113

    14. [14]

      Esteban-Martín, S.; Fenwick, R. B.; Salvatella, X. Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J. Am. Chem. Soc. 2010, 132, 4626-4632.  doi: 10.1021/ja906995x

    15. [15]

      Mandal, M.; Mukhopadhyay, C. Microsecond molecular dynamics simulation of guanidinium chloride induced unfolding of ubiquitin. Phys. Chem. Chem. Phys. 2014, 16, 21706-21716.  doi: 10.1039/C4CP01657B

    16. [16]

      Hua, L.; Zhou, R.; Thirumalai, D.; Berne, B. J. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. USA 2008, 105, 16928-16933.  doi: 10.1073/pnas.0808427105

    17. [17]

      Stirnemann, G.; Kang, S. G.; Zhou, R.; Berne, B. J. How force unfolding differs from chemical denaturation. Proc. Natl. Acad. Sci. USA 2014, 111, 3413-3418.  doi: 10.1073/pnas.1400752111

    18. [18]

      Shaw, K. L.; Scholtz, J. M.; Pace, C. N.; Grimsley, R. G. in Protein structure, stability, and interactions. Vol. 490, ed. by Shriver, J. W. Humana Press, Totowa, NJ, 2009, p. 41−55.

    19. [19]

      Tanford, C. Isothermal unfolding of globular proteins in aqueous urea solutions. J. Am. Chem. Soc. 1964, 86, 2050-2059.  doi: 10.1021/ja01064a028

    20. [20]

      Canchi, D. R.; García, A. E. Cosolvent effects on protein stability. Annu. Rev. Phys. Chem. 2013, 64, 273-293.  doi: 10.1146/annurev-physchem-040412-110156

    21. [21]

      Guinn, E. J.; Pegram, L. M.; Capp, M. W.; Pollock, M. N.; Record, M. T. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc. Natl. Acad. Sci. USA 2011, 108, 16932-16937.  doi: 10.1073/pnas.1109372108

    22. [22]

      Frank, H. S.; Franks, F. Structural approach to the solvent power of water for hydrocarbons: Urea as a structure breaker. J. Chem. Phys. 1968, 48, 4746-4757.  doi: 10.1063/1.1668057

    23. [23]

      Nayar, D.; Folberth, A.; van der Vegt, N. F. A. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry. Phys. Chem. Chem. Phys. 2017, 19, 18156-18161.  doi: 10.1039/C7CP01743J

    24. [24]

      O'Brien, E. P.; Dima, R. I.; Brooks, B.; Thirumalai, D. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J. Am. Chem. Soc. 2007, 129, 7346-7353.  doi: 10.1021/ja069232+

    25. [25]

      Stumpe, M. C.; Grubmüller, H. Polar or apolar—The role of polarity for urea-induced protein denaturation. PLoS Comp. Biol. 2008, 4, e1000221.  doi: 10.1371/journal.pcbi.1000221

    26. [26]

      Candotti, M.; Pérez, A.; Ferrer-Costa, C.; Rueda, M.; Meyer, T.; Gelpí, J. L.; Orozco, M. Exploring early stages of the chemical unfolding of proteins at the proteome scale. PLoS Comp. Biol. 2013, 9, e1003393.  doi: 10.1371/journal.pcbi.1003393

    27. [27]

      Stumpe, M. C.; Grubmüller, H. Urea impedes the hydrophobic collapse of partially unfolded proteins. Biophys. J. 2009, 96, 3744-3752.  doi: 10.1016/j.bpj.2009.01.051

    28. [28]

      Canchi, D. R.; García, Angel E. Backbone and side-chain contributions in protein denaturation by urea. Biophys. J. 2011, 100, 1526-1533.  doi: 10.1016/j.bpj.2011.01.028

    29. [29]

      Smolin, N.; Voloshin, V. P.; Anikeenko, A. V.; Geiger, A.; Winter, R.; Medvedev, N. N. TMAO and urea in the hydration shell of the protein SNase. Phys. Chem. Chem. Phys. 2017, 19, 6345-6357.  doi: 10.1039/C6CP07903B

    30. [30]

      Yang, K.; Cui, F.; Li, Y. Distribution and dynamics of water and urea in hydration shell of ribonuclease Sa: A molecular dynamics simulation study. Chinese Journal of Applied Chemistry 2018, 35, 1243-1248.

    31. [31]

      Biedermannová, L.; Schneider, B. Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. BBA-GEN SUBJECTS 2016, 1860, 1821-1835.  doi: 10.1016/j.bbagen.2016.05.036

    32. [32]

      Gavrilov, Y.; Leuchter, J. D.; Levy, Y. On the coupling between the dynamics of protein and water. Phys. Chem. Chem. Phys. 2017, 19, 8243-8257.  doi: 10.1039/C6CP07669F

    33. [33]

      Del Galdo, S.; Amadei, A. The unfolding effects on the protein hydration shell and partial molar volume: a computational study. Phys. Chem. Chem. Phys. 2016, 18, 28175-28182.  doi: 10.1039/C6CP05029H

    34. [34]

      Moron, M. C. Water dynamics on the surface of the protein barstar. Phys. Chem. Chem. Phys. 2012, 14, 15393-15399.  doi: 10.1039/c2cp41702b

    35. [35]

      Yang, K.; Różycki, B.; Cui, F.; Shi, C.; Chen, W.; Li, Y. Sampling enrichment toward target structures using hybrid molecular dynamics-Monte Carlo simulations. PLoS One 2016, 11, e0156043.  doi: 10.1371/journal.pone.0156043

    36. [36]

      Hu, J.; Ma, A.; Dinner, A. R. Monte Carlo simulations of biomolecules: The MC module in CHARMM. J. Comput. Chem. 2006, 27, 203-216.  doi: 10.1002/(ISSN)1096-987X

    37. [37]

      Vitalis, A.; Pappu, R. V. Methods for Monte Carlo simulations of biomacromolecules. In Annual reports in computational chemistry, Ralph, A. W., Ed. Elsevier, 2009, Vol. 5, pp. 49-76.

    38. [38]

      MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586-3616.  doi: 10.1021/jp973084f

    39. [39]

      Mackerell, A. D.; Feig, M.; Brooks, C. L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400-1415.  doi: 10.1002/jcc.v25:11

    40. [40]

      Li, Y. Q.; Zhang, Y. REMO: A new protocol to refine full atomic protein models from C-alpha traces by optimizing hydrogen-bonding networks. Proteins: Struct. Funct. Bioinform. 2009, 76, 665-674.  doi: 10.1002/prot.v76:3

    41. [41]

      Frishman, D.; Argos, P. Knowledge-based protein secondary structure assignment. Proteins: Struct. Funct. Bioinform. 1995, 23, 566-79.  doi: 10.1002/(ISSN)1097-0134

    42. [42]

      Im, W.; Lee, M. S.; Brooks, C. L. Generalized born model with a simple smoothing function. J. Comput. Chem. 2003, 24, 1691-1702.  doi: 10.1002/(ISSN)1096-987X

    43. [43]

      Weiser, J.; Shenkin, P. S.; Still, W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217-230.  doi: 10.1002/(ISSN)1096-987X

    44. [44]

      Tsodikov, O. V.; Record, M. T.; Sergeev, Y. V. Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem. 2002, 23, 600-609.  doi: 10.1002/(ISSN)1096-987X

    45. [45]

      Schneidman-Duhovny, D.; Hammel, M.; Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010, 38, W540-W544.  doi: 10.1093/nar/gkq461

    46. [46]

      Valentini, E.; Kikhney, A. G.; Previtali, G.; Jeffries, C. M.; Svergun, D. I. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015, 43, D357-63.  doi: 10.1093/nar/gku1047

    47. [47]

      Huang, J. R.; Gabel, F.; Jensen, M. R.; Grzesiek, S.; Blackledge, M. Sequence-specific mapping of the interaction between urea and unfolded ubiquitin from ensemble analysis of NMR and small angle scattering data. J. Am. Chem. Soc. 2012, 134, 4429-4436.  doi: 10.1021/ja2118688

    48. [48]

      Ribeiro, A. A.; de Alencastro, R. B. Mixed Monte Carlo/molecular dynamics simulations of the prion protein. J. Mol. Graph. Model. 2013, 42, 1-6.  doi: 10.1016/j.jmgm.2013.02.007

    49. [49]

      Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 1997, 23, 550-560.  doi: 10.1145/279232.279236

    50. [50]

      Morales, J. L.; Nocedal, J. Remark on "algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization". ACM Trans. Math. Softw. 2011, 38, 1-4.

    51. [51]

      Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087-1092.  doi: 10.1063/1.1699114

    52. [52]

      Seeber, M.; Felline, A.; Raimondi, F.; Muff, S.; Friedman, R.; Rao, F.; Caflisch, A.; Fanelli, F. Wordom: A user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J. Comput. Chem. 2011, 32, 1183-1194.  doi: 10.1002/jcc.21688

    53. [53]

      Heyer, L. J.; Kruglyak, S.; Yooseph, S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res. 1999, 9, 1106-1115.  doi: 10.1101/gr.9.11.1106

    54. [54]

      Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781-802.  doi: 10.1002/(ISSN)1096-987X

    55. [55]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.  doi: 10.1063/1.445869

    56. [56]

      Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D., Jr. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671-90.

    57. [57]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.  doi: 10.1016/0263-7855(96)00018-5

    58. [58]

      Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103, 4613-4621.  doi: 10.1063/1.470648

    59. [59]

      Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.  doi: 10.1016/0021-9991(77)90098-5

    60. [60]

      Candotti, M.; Esteban-Martín, S.; Salvatella, X.; Orozco, M. Toward an atomistic description of the urea-denatured state of proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 5933-5938.  doi: 10.1073/pnas.1216589110

    61. [61]

      Kohn, J. E.; Millett, I. S.; Jacob, J.; Zagrovic, B.; Dillon, T. M.; Cingel, N.; Dothager, R. S.; Seifert, S.; Thiyagarajan, P.; Sosnick, T. R.; Hasan, M. Z.; Pande, V. S.; Ruczinski, I.; Doniach, S.; Plaxco, K. W. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 12491-12496.  doi: 10.1073/pnas.0403643101

    62. [62]

      Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A. Polyproline-II Helix in Proteins: Structure and Function. J. Mol. Biol. 2013, 425, 2100-2132.  doi: 10.1016/j.jmb.2013.03.018

    63. [63]

      Chung, H. S.; Ganim, Z.; Jones, K. C.; Tokmakoff, A. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 14237-14242.  doi: 10.1073/pnas.0700959104

    64. [64]

      Chung, H. S.; Shandiz, A.; Sosnick, T. R.; Tokmakoff, A. Probing the folding transition state of ubiquitin mutants by temperature-jump-induced downhill unfolding. Biochemistry 2008, 47, 13870-13877.  doi: 10.1021/bi801603e

    65. [65]

      Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How fast-folding proteins fold. Science 2011, 334, 517-520.  doi: 10.1126/science.1208351

    66. [66]

      Baxa, M. C.; Freed, K. F.; Sosnick, T. R. Quantifying the structural requirements of the folding transition state of Protein A and other systems. J. Mol. Biol. 2008, 381, 1362-1381.  doi: 10.1016/j.jmb.2008.06.067

    67. [67]

      Sosnick, T. R.; Barrick, D. The folding of single domain proteins - have we reached a consensus? Curr. Opin. Struct. Biol. 2011, 21, 12-24.  doi: 10.1016/j.sbi.2010.11.002

    68. [68]

      Daggett, V. Protein Folding-Simulation. Chem. Rev. 2006, 106, 1898-1916.  doi: 10.1021/cr0404242

    69. [69]

      Qvist, J.; Ortega, G.; Tadeo, X.; Millet, O.; Halle, B. Hydration dynamics of a halophilic protein in folded and unfolded states. J. Phys. Chem. B 2012, 116, 3436-44.

  • 加载中
    1. [1]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    2. [2]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    3. [3]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    4. [4]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    5. [5]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    6. [6]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    9. [9]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    10. [10]

      Liang-Yu ChangLi-Ju XuDong Qiu . Shellac-based capsule for long-term controlled releasing urea with a broad soil pH tolerance. Chinese Chemical Letters, 2025, 36(5): 110034-. doi: 10.1016/j.cclet.2024.110034

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    13. [13]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    14. [14]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    15. [15]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    16. [16]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    17. [17]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    18. [18]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    19. [19]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    20. [20]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

Metrics
  • PDF Downloads(0)
  • Abstract views(836)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return