Citation: Da-Wei Shi, Xiang-Ling Lai, Yuan-Ping Jiang, Cong Yan, Zheng-Ying Liu, Wei Yang, Ming-Bo Yang. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 216-226. doi: 10.1007/s10118-019-2191-6 shu

Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix

  • Corresponding author: Ming-Bo Yang, yangmb@scu.edu.cn
  • Received Date: 20 August 2018
    Revised Date: 25 September 2018
    Accepted Date: 1 January 2018
    Available Online: 15 November 2018

  • The low melt strength and poor crystallization behavior severely limit the processing and application of poly(lactic acid) (PLA) as biodegradable film materials. In this work, three-arm poly(L-lactic acid) (3A-PLLA) grafted silica nanoparticles with two kinds of topology structures were introduced into PLA matrix to improve the biodegradation performance. Different methods were used to characterize the structure of the grafted 3A-PLLA chains, the grafting density, and the thermal decomposition behavior of the nanoparticles. By varying the mass ratios of raw materials and altering the order of dropping solution in the reaction, high grafting density-tangled 3A-PLLA grafted SiO2 was synthesized as " 3A-PLLA grafting to SiO2” (GTS), while low grafting density-stretched 3A-PLLA grafted SiO2 was obtained as " SiO2 grafting to 3A-PLLA” (GTA). Topology of nanoparticles as well as the filler-matrix interaction is critically important to structure bio-nanocomposites with desirable properties. Thus, the GTS and GTA nanoparticles were introduced into PLA matrix to assess the effect. The SEM images showed the uniform dispersion of the modified nanoparticles, while the shear rheology results revealed that GTA nanoparticles made a more significant contribution on the melt-strengthening and relaxation time-extension of PLA. Moreover, it is suggested that GTA nanoparticles were more effective to act as a nucleating agent for PLA, which was proved by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) researches. All of the improvements mentioned above of GTA nanocomposites can be ascribed to stronger entanglements between 3A-PLLA stretched by nano-SiO2 and PLA matrix.
  • 加载中
    1. [1]

      Maharana, T.; Mohanty, B.; Negi, Y. S. Melt-solid polycondensation of lactic acid and its biodegradability. Progress in Polymer Science 2009, 34, 99-124.  doi: 10.1016/j.progpolymsci.2008.10.001

    2. [2]

      Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules 2011, 12, 523-532.  doi: 10.1021/bm101302t

    3. [3]

      Zhang, P.; Hong, Z.; Yu, T.; Chen, X.; Jing, X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials 2009, 30, 58-70.  doi: 10.1016/j.biomaterials.2008.08.041

    4. [4]

      Revati, R.; Majid, M. S. A.; Ridzuan, M. M.; Normahira, M.; Nasir, N. F. M.; Rahman, M. N. Y.; Gibson, A. G. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Materials Science & Engineering C-Materials for Biological Applications 2017, 75, 752-759.

    5. [5]

      Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheologica Acta 2014, 53, 501-517.  doi: 10.1007/s00397-014-0774-2

    6. [6]

      Pinese, C.; Gagnieu, C.; Nottelet, B.; Rondot-Couzin, C.; Hunger, S.; Coudane, J.; Garric, X. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2017, 105, 1778-1788.  doi: 10.1002/jbm.b.v105.7

    7. [7]

      Chinsirikul, W.; Rojsatean, J.; Hararak, B.; Kerddonfag, N.; Aontee, A.; Jaieau, K.; Kumsang, P.; Sripethdee, C. Flexible and tough poly(lactic acid) films for packaging applications: Property and processability improvement by effective reactive blending. Packaging Technology & Science 2015, 28, 741-759.  doi: 10.1002/pts.2141

    8. [8]

      Sirisinha, K.; Somboon, W. Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide). Journal of Applied Polymer Science 2012, 124, 4986-4992.  doi: 10.1002/app.35604

    9. [9]

      Hua, S.; Chen, F.; Liu, Z. Y.; Yang, W.; Yang, M. B. Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: Synthesis, characterization and properties. RSC Adv. 2016, 6, 1973-1983.  doi: 10.1039/C5RA23182E

    10. [10]

      Zhang, M.; Thomas, N. L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology 2011, 30, 67-79.  doi: 10.1002/adv.v30.2

    11. [11]

      Jestin, J.; Cousin, F.; Dubois, I.; Ménager, C.; Schweins, R.; Oberdisse, J.; Boué, F. Anisotropic reinforcement of nanocomposites tuned by magnetic orientation of the filler network. Advanced Materials 2008, 20, 2533-2540.  doi: 10.1002/adma.v20:13

    12. [12]

      Li, Y.; Sun, X. S. Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylated MgO. Biomacromolecules 2010, 11, 1847-1855.  doi: 10.1021/bm100320q

    13. [13]

      Hong, Z.; Qiu, X.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer 2004, 45, 6699-6706.  doi: 10.1016/j.polymer.2004.07.036

    14. [14]

      Jin, T. Y.; Sang, C. L.; Jeong, Y. G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Composites Science & Technology 2010, 70, 776-782.  doi: 10.1016/j.compscitech.2010.01.011

    15. [15]

      Chevigny, C.; Dalmas, F.; Cola, E. D.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior. Macromolecules 2011, 44, 122-133.  doi: 10.1021/ma101332s

    16. [16]

      Géraldine Carrot; Delphine Rutothouzé; Agnès Pottier; Philippe Degée; Jöns Hilborn, A.; Philippe Dubois Surface-initiated ring-opening polymerization: A versatile method for nanoparticle ordering. Macromolecules 2002, 35, 8400-8404.  doi: 10.1021/ma020558m

    17. [17]

      Shinoda, H.; Matyjaszewski, K. Structural control of poly(methyl methacrylate)-g-poly(lactic acid) graft copolymers by atom transfer radical polymerization (ATRP). Macromolecules 2001, 34, 6243-6248.  doi: 10.1021/ma0105791

    18. [18]

      Perruchot, C.; Khan, M. A.; A. Kamitsi, A.; Armes, S. P.; And, T. V. W.; Patten, T. E. Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 2001, 17, 4479-4481.  doi: 10.1021/la0102758

    19. [19]

      Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 2004, 37, 752-757.  doi: 10.1021/ma035214q

    20. [20]

      Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). Journal of Physical Chemistry B 2005, 109, 22237-22243.  doi: 10.1021/jp054768n

    21. [21]

      Wu, F.; Lan, X. R.; Ji, D. Y.; Liu, Z. Y.; Yang, W.; Yang, M. B. Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-grafted-SiO2 nanocomposites. Journal of Applied Polymer Science 2013, 129, 3019-3027.  doi: 10.1002/app.38585

    22. [22]

      Wu, F.; Zhang, B.; Yang, W.; Liu, Z. Y.; Yang, M. B. Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 2014, 55, 5760-5772.  doi: 10.1016/j.polymer.2014.08.070

    23. [23]

      Kim, E. S.; Kim, B. C.; Kim, S. H. Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties. Journal of Polymer Science Part B-Polymer Physics 2004, 42, 939-946.  doi: 10.1002/(ISSN)1099-0488

    24. [24]

      Zhou, M.; Zhou, P.; Xiong, P.; Qian, X.; Zheng, H. Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender. Macromolecular Research 2015, 23, 231-236.  doi: 10.1007/s13233-015-3018-0

    25. [25]

      Xu, H.; Fang, H.; Bai, J.; Zhang, Y.; Wang, Z. Preparation and Characterization of High-melt-strength polylactide with long-chain branched structure through γ-radiation-induced chemical reactions. Industrial & Engineering Chemistry Research 2014, 53, 1150-1159.  doi: 10.1021/ie403669a

    26. [26]

      Mannion, A. M.; Bates, F. S.; Macosko, C. W. Synthesis and rheology of branched multiblock polymers based on polylactide. Macromolecules 2016, 49, 4587-4598.  doi: 10.1021/acs.macromol.6b00792

    27. [27]

      Fan, Y. J.; Nishida, H.; Shirai, Y.; Endo, T. Thermal stability of poly(L-lactide): Influence of end protection by acetyl group. Polymer Degradation and Stability 2004, 84, 143-149.  doi: 10.1016/j.polymdegradstab.2003.10.004

    28. [28]

      Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y. Rheology and crystallization of long-chain branched poly(L-lactide)s with controlled branch length. Industrial & Engineering Chemistry Research 2012, 51, 10731-10741.  doi: 10.1021/ie300524j

    29. [29]

      George, K. A.; Schue, F.; Chirila, T. V.; Wentrup-Byrne, E. Synthesis of four-arm star poly(L-lactide) oligomers using an in situ-generated calcium-based initiator. Journal of Polymer Science Part a-Polymer Chemistry 2009, 47, 4736-4748.  doi: 10.1002/pola.v47:18

    30. [30]

      Lu, X.; Lv, X.; Sun, Z.; Zheng, Y. Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. European Polymer Journal 2008, 44, 2476-2481.  doi: 10.1016/j.eurpolymj.2008.06.002

    31. [31]

      Kim, S. H.; Han, Y. K.; Kim, Y. H.; Hong, S. I. Multifunctional initiation of lactide polymerization by stannous octoate pentaerythritol. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1992, 193, 1623-1631.  doi: 10.1002/macp.1992.021930706

    32. [32]

      Zhang, C. X.; Wang, B.; Chen, Y.; Cheng, F.; Jiang, S. C. Amphiphilic multiarm star polylactide with hyperbranched polyethylenimine as core: A systematic reinvestigation. Polymer 2012, 53, 3900-3909.  doi: 10.1016/j.polymer.2012.07.002

    33. [33]

      Shi, W. P.; Zhao, C. Y.; Li, S. M.; Fan, Z. Y. Synthesis of tri-arm PLLA-PDLA block copolymers and its stereocomplex crystallization behavior. Chemical Journal of Chinese Universities-Chinese 2012, 33, 2092-2098.  doi: 10.3969/j.issn.0251-0790.2012.09.038

    34. [34]

      Dorgan, J. R.; Williams, J. S.; Lewis, D. N. Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. Journal of Rheology 1999, 43, 1141-1155.  doi: 10.1122/1.551041

    35. [35]

      Hong, Z. K.; Zhang, P. B.; He, C. L.; Qiu, X. Y.; Liu, A. X.; Chen, L.; Chen, X. S.; Jing, X. B. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 2005, 26, 6296-6304.  doi: 10.1016/j.biomaterials.2005.04.018

    36. [36]

      Zou, J.; Ma, T.; Zhang, J.; He, W.; Huang, F. Preparation and characterization of PLLA-ESO/surface-grafted silica nanocomposites. Polymer Bulletin 2011, 67, 1261-1271.  doi: 10.1007/s00289-011-0485-0

    37. [37]

      Luo, Y. B.; Wang, X.-L.; Xu, D.-Y.; Wang, Y. Z. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Applied Surface Science 2009, 255, 6795-6801.  doi: 10.1016/j.apsusc.2009.02.074

    38. [38]

      Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107-1110.  doi: 10.1126/science.1130557

    39. [39]

      Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I. Experimental trends in polymer nanocomposites - a review. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2005, 393, 1-11.  doi: 10.1016/j.msea.2004.09.044

    40. [40]

      Li, H. B.; Huneault, M. A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 2007, 48, 6855-6866.  doi: 10.1016/j.polymer.2007.09.020

    41. [41]

      Nofar, M.; Zhu, W. L.; Park, C. B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide. Industrial & Engineering Chemistry Research 2011, 50, 13789-13798.

  • 加载中
    1. [1]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    2. [2]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    3. [3]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    4. [4]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    5. [5]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    6. [6]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    7. [7]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    10. [10]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    11. [11]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    12. [12]

      Qiang LuoJinfeng SunZhibo LiBin LiuJianxun Ding . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism. Chinese Chemical Letters, 2025, 36(7): 110433-. doi: 10.1016/j.cclet.2024.110433

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    17. [17]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    18. [18]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    19. [19]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

Metrics
  • PDF Downloads(0)
  • Abstract views(1157)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return