Citation: Fatima Mumtaz, Chao-Shi Chen, Hai-Kun Zhu, Muhammad Atif, Yan-Mei Wang. Reversible Protein Adsorption on PMOXA/PAA Based Coatings: Role of PAA[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1328-1341. doi: 10.1007/s10118-018-2168-x shu

Reversible Protein Adsorption on PMOXA/PAA Based Coatings: Role of PAA

  • Corresponding author: Yan-Mei Wang, wangyanm@ustc.edu.cn
  • Received Date: 10 May 2018
    Revised Date: 25 May 2018
    Accepted Date: 28 May 2018
    Available Online: 4 July 2018

  • In this study we report design of stimuli-responsive coating based on poly(2-methyl-2-oxazoline-random-glycidyl methacrylate) (PMOXA-r-GMA) comb copolymer and poly(acrylic acid)-block-poly(glycidyl methacrylate) (PAA-b-PGMA) block copolymers and scrutinize its ability to control protein adsorption. Firstly, PMOXA/PAA based coatings were prepared by simply spin coating the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions onto silicon substrates followed by annealing at 110 °C. Then coatings were rigorously characterized by X-ray photoelectron spectroscopy (XPS), the static water contact angle (WCA) test, ellipsometry and atomic force microscopy (AFM). After that, the relationship of switchable behavior of PMOXA/PAA based coatings with PAA content and chain length was investigated through the change of thickness and WCA upon pH and ionic strength (I) trigger, which indicated that the change in thickness and WCA was triggered when PAA contents were increased as well as by increasing chain length of PAA in PMOXA/PAA based coatings. Finally, real-time adsorption/desorption of lysozyme (Lyso) on PMOXA/PAA based coatings was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D). The results showed that the Lyso adsorption amount was increased upon increasing chain length and contents of PAA in PMOXA/PAA based coatings. The adsorbed Lyso was then efficiently desorbed by changing pH and I of medium with the maximum desorption (> 90% desorption percentage) observed for the suitable ratio of PMOXA and PAA while chain length of PAA was kept longer than that of PMOXA. Furthermore, the prepared coatings were found to repeatedly adsorb and desorb Lyso for four successive cycles of adsorption/desorption, which confirmed the stability of prepared coatings.
  • 加载中
    1. [1]

      Roach, P.; Farrar, D.; Perry, C. C. Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 2006, 128(12), 3939−3945  doi: 10.1021/ja056278e

    2. [2]

      Lei, Z.; Gao, J.; Liu, X.; Liu, D.; Wang, Z. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) brushes as peptide/protein microarray substrate for improving protein binding and functionality. ACS Appl. Mater. Interfaces 2016, 8(16), 10174−10182  doi: 10.1021/acsami.6b01156

    3. [3]

      Chen, H.; Yang, J.; Xiao, S.; Hu, R.; Bhaway, M. S.; Vogt, D. B.; Zhang, M.; Chen, Q.; Ma, J.; Chang, Y.; Li, L.; Zheng, J. Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomater. 2016, 40, 62−69  doi: 10.1016/j.actbio.2016.03.009

    4. [4]

      Liu, W.; Zhang, Y.; Fang, L.; Zhu, B.; Zhu, L. Antifouling properties of poly(vinly chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chinese J. Polym. Sci. 2012, 30(4), 568−577  doi: 10.1007/s10118-012-1153-z

    5. [5]

      Bettahalli, S. M. N.; Arkesteijn, M. T. I.; Wessling, M.; Poot, A. A.; Stamatialis, D. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds. Acta Biomater. 2013, 9(6), 6928−6935  doi: 10.1016/j.actbio.2013.02.029

    6. [6]

      Jana, S.; Tefft, J. B.; Spoon, B. D.; Simari, D. R. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014, 10, 2877−2893  doi: 10.1016/j.actbio.2014.03.014

    7. [7]

      Tan, L.; Xing, J.; Cao, F.; Chen, L.; Zhang, C.; Shi, R.; Wang, Y. Synthesis of double-hydrophillic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties. Chinese J. Polym. Sci. 2013, 31(4), 691−701  doi: 10.1007/s10118-013-1254-3

    8. [8]

      Cavallaro, A. A.; MacGregor-Ramiasa, N. M.; Vasilev, K. Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Appl. Mater. Interfaces 2016, 8(10), 6354−6362  doi: 10.1021/acsami.6b00330

    9. [9]

      Demirci, S.; Kinali-Demirci, S.; Jiang, S. A switchable polymer brush system for antifouling and controlled detection. Chem. Commun. 2017, 53(26), 3713−3716  doi: 10.1039/C7CC00193B

    10. [10]

      Gao, F.; Xing, Y.; Yao, Y.; Sun, L.; Sun, Y.; He, X.; Lin, S. Self-assembly and multi-stimuli responsive behavior of PAA-b-PAzoMA-b-PNIPAM triblock copolymers. Polym. Chem. 2017, 8(48), 7529−7536  doi: 10.1039/C7PY01591G

    11. [11]

      Alas, R. G.; Agarwal, R.; Collard, M. D.; García, J. A. Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell ddhesion. Acta Biomater. 2017, 59, 108−116  doi: 10.1016/j.actbio.2017.06.033

    12. [12]

      Hoy, O. B.; Zdyrko, B.; Lupitskyy, R.; Sheparovych, R.; Aulich, D.; Wang, J.; Bittrich, E.; Eichhorn, K.; Stamm, M.; Uhlmann, P.; Hinrichs, K.; Mu, M.; Minko, S.; Luzinov, I. Synthetic hydrophilic materials with tunable strength and a range of hydrophobic interactions. Adv. Funct. Mater. 2010, 20(14), 2240−2247  doi: 10.1002/adfm.v20:14

    13. [13]

      Delcroix, F. M.; Huet, L. G.; Conard, T.; Du Prez, E. F.; Landoulsi, J. Design of mixed PEO/PAA brushes with switchable properties toward protein adsorption. Biomacromolecules 2012, 14(1), 215−225

    14. [14]

      Delcroix, F. M.; Huet, L. G.; Conard, T.; Demoustier-Champagne, S.; Du Prez, E. F.; Landoulsi, J.; Dupont-Gillain, C. C. Quartz crystal microbalance study of ionic strength and pH dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes. Langmuir 2013, 30(1), 268−277

    15. [15]

      Delcroix, F. M.; Laurent, S.; Huet, L. G.; Dupont-Gillain, C. C. Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes. Acta Biomater. 2015, 11, 68−79  doi: 10.1016/j.actbio.2014.09.010

    16. [16]

      Bratek-skicki, A.; Eloy, P.; Morga, M.; Dupont-gillain, C. Reversible protein adsorption on mixed PEO/PAA polymer brushes: Role of ionic strength and PEO content. Langmuir 2018, 34(9), 3037−3048  doi: 10.1021/acs.langmuir.7b04179

    17. [17]

      Mero, A.; Pasut, G.; Dalla, L.; Fijten, M. W. M.; Schubert, S. U.; Hoogenboom, R.; Veronese, M. F. Synthesis and characterization of poly(2-ethyl-2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates. J. Control. Release 2008, 125(2), 87−95  doi: 10.1016/j.jconrel.2007.10.010

    18. [18]

      Chen, Y.; Pidhatika, B.; Erlach, V. T.; Konradi, R.; Textor, M.; Hall, H. Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: An in vitro cell culture study. Biointerphases 2014, 9(3), 031003  doi: 10.1116/1.4878461

    19. [19]

      Tan, L.; Bai, L.; Zhu, H.; Zhang, C.; Chen, L.; Wang, Y.; Cheradame, H. Stable antifouling coatings by hydrogen-bonding interaction and poly(acrylic acid). J. Mater. Sci. 2015, 50(14), 4898−4913  doi: 10.1007/s10853-015-9035-8

    20. [20]

      Zhu, H.; Mumtaz, F.; Zhang, C.; Tan, L.; Liu, S.; Zhang, Y.; Pan, C.; Wang, Y. A rapid approach to prepare poly(2-methyl-2-oxazoline)-based antifouling coating by UV irradiation. Appl. Surf. Sci. 2017, 426, 817−826  doi: 10.1016/j.apsusc.2017.07.260

    21. [21]

      Pan, C.; Liu, X.; Gong, K.; Mumtaz, F.; Wang, Y. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption. J. Mater. Chem. B 2018, 6, 56−567  doi: 10.1039/C7TB02538F

    22. [22]

      Mumtaz, F.; Chen, C.; Zhu, H.; Pan, C.; Wang, Y. Controlled protein adsorption on PMOXA/PAA based coatings by thermally induced immobilization. Appl. Surf. Sci. 2018, 439, 148−159  doi: 10.1016/j.apsusc.2018.01.010

    23. [23]

      Du, J.; Willcock, H.; Patterson, P. J.; Portman, I.; O’Reilly, K. R. Self-assembly of hydrophilic homopolymers: a matter of RAFT end groups. Small 2011, 7(14), 2070−2080  doi: 10.1002/smll.201100382

    24. [24]

      Zeinali, E.; Haddadi-Asl, V.; Roghani-Mamaqani, H. Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv. 2014, 4(59), 31428−31442  doi: 10.1039/C4RA05442C

    25. [25]

      Qu, Z.; Hu, F.; Chen, K.; Duan, Z.; Gu, H.; Xu, H. A facile route to the synthesis of spherical poly(acrylic acid) brushes via RAFT polymerization for high-capacity protein immobilization. J. Colloid Interface Sci. 2013, 398, 82−87  doi: 10.1016/j.jcis.2013.02.001

    26. [26]

      Bai, L.; Tan, L.; Chen, L.; Liu, S.; Wang, Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J. Mater. Chem. B 2014, 2(44), 7785−7794  doi: 10.1039/C4TB01383B

    27. [27]

      Liu, G.; Zhang, G. Collapse and swelling of thermally sensitive poly(N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance. J. Phy. Chem. B 2005, 109(2), 743−747  doi: 10.1021/jp046903m

    28. [28]

      Dong, R.; Lindau, M.; Ober, K. C. Dissociation behavior of weak polyelectrolyte brushes on a planar surface. Langmuir 2009, 25(8), 4774−4779  doi: 10.1021/la8039384

    29. [29]

      Aulich, D.; Hoy, O.; Luzinov, I.; Brücher, M.; Hergenröder, R.; Bittrich, E.; Eichhorn, J. K.; Uhlmann, P.; Stamm, M.; Esser, N.; Hinrichs, K. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments. Langmuir 2010, 26(15), 12926−12932  doi: 10.1021/la101762f

    30. [30]

      Yadav, V.; Harkin, V. A.; Robertson, L. M.; Conrad, C. J. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes. Soft Matter 2016, 12(15), 3589−3599  doi: 10.1039/C5SM03134F

    31. [31]

      Belegrinou, S.; Mannelli, I.; Lisboa, P.; Bretagnol, F.; Valsesia, A.; Ceccone, G.; Colpo, P.; Rauscher, H. pH-Dependent immobilization of proteins on surfaces functionalized by plasma-enhanced chemical vapor deposition of poly(acrylic acid) and poly(ethylene oxide) like films. Langmuir 2008, 24(11), 7251−7261

    32. [32]

      Wang, W.; Cui, M.; Song, Z.; Luo, X. An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Adv. 2016, 6(91), 88411−88416  doi: 10.1039/C6RA19169J

    33. [33]

      Luo, L. Y.; Zhang, Y. X.; Wang, Y.; Han, J. F.; Xu, F.; Chen, S. Y. Mediating physicochemical properties and paclitaxel release of pH-responsive H-type multiblock copolymer self-assembly nanomicelles through epoxidation. J. Mater. Chem. B 2017, 5(17), 3111−3121  doi: 10.1039/C7TB00073A

    34. [34]

      Christener, M. N. A. J.; Honeyman, D. B. Influence of aqueous pH and ionic strength on the wettability of quartz in the presence of dense non-aqueous-phase liquids. Environ. Sci. Technol. 1997, 31(3), 676−681  doi: 10.1021/es960217m

    35. [35]

      Konradi, R.; Pidhatika, B.; Mühlebach, A.; Textor, M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir 2008, 24(3), 613−616  doi: 10.1021/la702917z

    36. [36]

      Pidhatika, B.; Möller, J.; Vogel, V. ; Konradi, R. Nonfouling surface coatings based on poly(2-methyl-2-oxazoline). CHIMIA. Int. J. Chem. 2008, 62(4), 264−269  doi: 10.2533/chimia.2008.264

    37. [37]

      Dai, J.; Bao, Z.; Sun, L.; Hong, U. S.; Baker, L. G.; Bruening, L.M. High-capacity binding of proteins by poly(acrylic acid ) brushes and their derivatives. Langmuir 2006, 22(9), 4274−4281  doi: 10.1021/la0600550

    38. [38]

      Swift, T.; Swanson, L.; Geoghegan, M.; Rimmer, S. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 2016, 12(9), 2542−2549  doi: 10.1039/C5SM02693H

  • 加载中
    1. [1]

      Xingyu MaYi-Xin ChenZi YeChong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    4. [4]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    5. [5]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    6. [6]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    7. [7]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    8. [8]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    9. [9]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    10. [10]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    11. [11]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    12. [12]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    13. [13]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    16. [16]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    17. [17]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    18. [18]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    19. [19]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    20. [20]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

Metrics
  • PDF Downloads(0)
  • Abstract views(966)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return