Citation: Yun Wang, Meng Huo, Min Zeng, Lei Liu, Qi-Quan Ye, Xi Chen, Dan Li, Liao Peng, Jin-Ying Yuan. CO2-responsive Polymeric Fluorescent Sensor with Ultrafast Response[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1321-1327. doi: 10.1007/s10118-018-2167-y shu

CO2-responsive Polymeric Fluorescent Sensor with Ultrafast Response

  • Corresponding author: Jin-Ying Yuan, yuanjy@mail.tsinghua.edu.cn
  • Received Date: 7 May 2018
    Revised Date: 27 May 2018
    Accepted Date: 28 May 2018
    Available Online: 11 July 2018

  • Response speed is one of the most important evaluation criteria for CO2 sensors. In this work, we report an ultrafast CO2 fluorescent sensor based on poly[oligo(ethylene glycol) methyl ether methacrylate]-b-poly[N,N-diethylaminoethyl methacrylate-r-4-(2-methylacryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole] [POEGMA-b-P(DEAEMA-r-NBDMA)], in which DEAEMA units act as the CO2-responsive segment and 4-nitrobenzo-2-oxa-1,3-diazole (NBD) is the chromophore. The micelles composed of this copolymer could disassemble in 2 s upon CO2 bubbling, accompanying with enhanced fluorescence emission with bathochromic shift. Furthermore, the quantum yield of the NBD chromophore increases with both the CO2 aeration time and the NBD content. Thus we attribute the fluorescent enhancement to the inhibition of the photo-induced electron transfer between unprotonated tertiary amine groups and NBD fluorophores. The sensor is durable although it is based on " soft” materials. These micellar sensors could be facilely recycled by alternative CO2/Ar purging for at least 5 times, indicating good reversibility.
  • 加载中
    1. [1]

      Ko, N. R.; Oh, J. K. Glutathione-triggered disassembly of dual disulfide located degradable nanocarriers of polylactide-based block copolymers for rapid drug release. Biomacromolecules 2014, 15(8), 3180−3189  doi: 10.1021/bm5008508

    2. [2]

      Zhu, Y.; Wang, F.; Zhang, C.; Du, J. Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity. ACS Nano 2014, 8(7), 6644−6654  doi: 10.1021/nn502386j

    3. [3]

      Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Polymer-based muscle expansion and contraction. Angew. Chem. Int. Ed. 2013, 52(39), 10330−10333  doi: 10.1002/anie.201303475

    4. [4]

      Yang, R.; Zhao, Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes. Angew. Chem. Int. Ed. 2017, 56(45), 14202−14206  doi: 10.1002/anie.201709528

    5. [5]

      Kumar, S.; Dory, Y. L.; Lepage, M.; Zhao, Y. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and pH-sensitive release of dye molecules. Macromolecules 2011, 44(18), 7385−7393  doi: 10.1021/ma2010102

    6. [6]

      Xu, L.; Liu, N.; Cao, Y.; Lu, F.; Chen, Y.; Zhang, X.; Feng, L.; Wei, Y. Mercury ion responsive wettability and oil/water separation. ACS Appl. Mater. Interfaces 2014, 6(16), 13324−13329  doi: 10.1021/am5038214

    7. [7]

      Li, C.; Wu, T.; Hong, C.; Zhang, G.; Liu, S. A general strategy to construct fluorogenic probes from charge-generation polymers (CGPs) and AIE-active fluorogens through triggered complexation. Angew. Chem. Int. Ed. 2012, 51(2), 455−459  doi: 10.1002/anie.201105735

    8. [8]

      Zhang, Q. M.; Xu, W.; Serpe, M. J. Optical devices constructed from multiresponsive microgels. Angew. Chem. Int. Ed. 2014, 53(19), 4827−4831  doi: 10.1002/anie.201402641

    9. [9]

      Hu, J.; Dai, L.; Liu, S. Analyte-reactive amphiphilic thermoresponsive diblock copolymer micelles-based multifunctional ratiometric fluorescent chemosensors. Macromolecules 2011, 44(12), 4699−4710  doi: 10.1021/ma2001146

    10. [10]

      Rahimian-Bajgiran, K.; Chan, N.; Zhang, Q.; Noh, S. M.; Lee, H. I.; Oh, J. K. Tuning LCST with thiol-responsiveness of thermoresponsive copolymers containing pendant disulfides. Chem. Commun. 2013, 49(8), 807−809  doi: 10.1039/C2CC37804C

    11. [11]

      Xiao, Y.; Sun, H.; Du, J. Sugar-breathing glycopolymersomes for regulating glucose level. J. Am. Chem. Soc. 2017, 139(22), 7640−7647  doi: 10.1021/jacs.7b03219

    12. [12]

      Xin, Y.; Yuan, J. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym. Chem. 2012, 3(11), 3045  doi: 10.1039/c2py20290e

    13. [13]

      Feng, A.; Liang, J.; Ji, J.; Dou, J.; Wang, S.; Yuan, J. CO2-breathing and piercing polymersomes as tunable and reversible nanocarriers. Sci. Rep. 2016, 6, 23624  doi: 10.1038/srep23624

    14. [14]

      Zhang, Q.; Lei, L.; Zhu, S. Gas-responsive polymers. ACS Macro Lett. 2017, 6(5), 515−522  doi: 10.1021/acsmacrolett.7b00245

    15. [15]

      Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 2014, 5(5), 1519−1528  doi: 10.1039/C3PY01192E

    16. [16]

      Yan, Q.; Feng, A.; Zhang, H.; Yin, Y.; Yuan, J. Redox-switchable supramolecular polymers for responsive self-healing nanofibers in water. Polym. Chem. 2013, 4(4), 1216−1220  doi: 10.1039/C2PY20849K

    17. [17]

      Jiang, Y.; Hu, X.; Hu, J.; Liu, H.; Zhong, H.; Liu, S. Reactive fluorescence turn-on probes for fluoride ions in purely aqueous media fabricated from functionalized responsive block copolymers. Macromolecules 2011, 44(22), 8780−8790  doi: 10.1021/ma2018588

    18. [18]

      Liu, T.; Liu, S. Responsive polymers-based dual fluorescent chemosensors for Zn2+ ions and temperatures working in purely aqueous media. Anal. Chem. 2011, 83(7), 2775−2785  doi: 10.1021/ac200095f

    19. [19]

      Huo, M.; Du, H.; Zeng, M.; Pan, L.; Fang, T.; Xie, X.; Wei, Y.; Yuan, J. CO2-stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym. Chem. 2017, 8(18), 2833−2840  doi: 10.1039/C7PY00214A

    20. [20]

      Huo, M.; Ye, Q.; Che, H.; Sun, M.; Yuan, J.; Wei, Y. Synthesis and self-assembly of CO2-responsive dendronized triblock copolymers. Polym. Chem. 2015, 6(42), 7427−7435  doi: 10.1039/C5PY00868A

    21. [21]

      Kumar, S.; Tong, X.; Dory, Y. L.; Lepage, M.; Zhao, Y. A CO2-switchable polymer brush for reversible capture and release of proteins. Chem. Commun. 2013, 49(1), 90−92  doi: 10.1039/C2CC36284H

    22. [22]

      Liu, H.; Lin, S.; Feng, Y.; Theato, P. CO2-responsive polymer materials. Polym. Chem. 2017, 8(1), 12−23  doi: 10.1039/C6PY01101B

    23. [23]

      Yan, Q.; Zhang, H.; Zhao, Y. CO2-switchable supramolecular block glycopolypeptide assemblies. ACS Macro Lett. 2014, 3(5), 472−476  doi: 10.1021/mz500181q

    24. [24]

      Yan, Q.; Zhao, Y. CO2-stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc. 2013, 135(44), 16300−16303  doi: 10.1021/ja408655n

    25. [25]

      Yan, Q.; Zhao, Y. Block copolymer self-assembly controlled by the "green" gas stimulus of carbon dioxide. Chem. Commun. 2014, 50(79), 11631−11641  doi: 10.1039/C4CC03412K

    26. [26]

      Mu, M.; Yin, H.; Feng, Y. CO2-responsive polyacrylamide microspheres with interpenetrating networks. J. Colloid Interface Sci. 2017, 497, 249−257  doi: 10.1016/j.jcis.2017.03.012

    27. [27]

      Wang, W.; Liu, H.; Mu, M.; Yin, H.; Feng, Y. CO2-induced reversible morphology transition from giant worms to polymersomes assembled from a block-random segmented copolymer. Polym. Chem. 2015, 6(15), 2900−2908  doi: 10.1039/C5PY00053J

    28. [28]

      Yin, H.; Wang, W.; Mu, M.; Feng, Y. CO2-induced morphological transition of co-assemblies from block-random segmented polymers. Macromol. Rapid Commun. 2017, 38(23), 1700437  doi: 10.1002/marc.v38.23

    29. [29]

      Han, D.; Tong, X.; Boissière, O.; Zhao, Y. General strategy for making CO2-switchable polymers. ACS Macro Lett. 2012, 1(1), 57−61  doi: 10.1021/mz2000175

    30. [30]

      Yan, B.; Han, D.; Boissière, O.; Ayotte, P.; Zhao, Y. Manipulation of block copolymer vesicles using CO2: dissociation or " breathing”. Soft Matter 2013, 9(6), 2011  doi: 10.1039/c2sm27469h

    31. [31]

      Guo, Z.; Feng, Y.; He, S.; Qu, M.; Chen, H.; Liu, H.; Wu, Y.; Wang, Y. CO2-responsive "smart" single-walled carbon nanotubes. Adv. Mater. 2013, 25(4), 584−590  doi: 10.1002/adma.201202991

    32. [32]

      Guo, Z.; Feng, Y.; Wang, Y.; Wang, J.; Wu, Y.; Zhang, Y. A novel smart polymer responsive to CO2. Chem. Commun. 2011, 47(33), 9348−9350  doi: 10.1039/c1cc12388b

    33. [33]

      Yan, Q.; Zhao, Y. Polymeric microtubules that breathe: CO2-driven polymer controlled-self-assembly and shape transformation. Angew. Chem. Int. Ed. 2013, 52(38), 9948−9951  doi: 10.1002/anie.201303984

    34. [34]

      Yan, Q.; Zhou, R.; Fu, C.; Zhang, H.; Yin, Y.; Yuan, J. CO2-responsive polymeric vesicles that breathe. Angew. Chem. Int. Ed. 2011, 50(21), 4923−4927  doi: 10.1002/anie.v50.21

    35. [35]

      Quek, J. Y.; Roth, P. J.; Evans, R. A.; Davis, T. P.; Lowe, A. B. Reversible addition-fragmentation chain transfer synthesis of amidine-based, CO2-responsive homo and AB diblock copolymers comprised of histamine and their gas-triggered self-assembly in water. J. Polym. Sci., Part A: Polym. Chem. 2013, 51(2), 394−404  doi: 10.1002/pola.26397

    36. [36]

      Che, H.; Huo, M.; Peng, L.; Ye, Q.; Guo, J.; Wang, K.; Wei, Y.; Yuan, J. CO2-switchable drug release from magneto-polymeric nanohybrids. Polym. Chem. 2015, 6(12), 2319−2326  doi: 10.1039/C4PY01800A

    37. [37]

      Che, H.; Huo, M.; Peng, L.; Fang, T.; Liu, N.; Feng, L.; Wei, Y.; Yuan, J. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed. 2015, 54(31), 8934−8938  doi: 10.1002/anie.201501034

    38. [38]

      Dong, L.; Fan, W.; Tong, X.; Zhang, H.; Chen, M.; Zhao, Y. A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification. J. Mater. Chem. A 2018, 6(16), 6785−6791  doi: 10.1039/C8TA00623G

    39. [39]

      Dong, L.; Fan, W.; Zhang, H.; Chen, M.; Zhao, Y. CO2-responsive polymer membranes with gas-tunable pore size. Chem. Commun. 2017, 53(69), 9574−9577  doi: 10.1039/C7CC05291J

    40. [40]

      Hong, W.; Chen, Y.; Feng, X.; Yan, Y.; Hu, X.; Zhao, B.; Zhang, F.; Zhang, D.; Xu, Z.; Lai, Y. Full-color CO2 gas sensing by an inverse opal photonic hydrogel. Chem. Commun. 2013, 49(74), 8229−8231  doi: 10.1039/c3cc44825h

    41. [41]

      Ma, Y.; Promthaveepong, K.; Li, N. CO2-responsive polymer-functionalized Au nanoparticles for CO2 sensor. Anal. Chem. 2016, 88(16), 8289−8293  doi: 10.1021/acs.analchem.6b02133

    42. [42]

      Zhang, Q. M.; Ahiabu, A.; Gao, Y.; Serpe, M. J. CO2-switchable poly(N-isopropylacrylamide) microgel-based etalons. J. Mater. Chem. C 2015, 3(3), 495−498  doi: 10.1039/C4TC02600D

    43. [43]

      Xu, L. Q.; Zhang, B.; Sun, M.; Hong, L.; Neoh, K. G.; Kang, E. T.; Fu, G. D. CO2-triggered fluorescence " turn-on” response of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). J. Mater. Chem. A 2013, 1(4), 1207−1212  doi: 10.1039/C2TA00482H

    44. [44]

      Mabire, A. B.; Brouard, Q.; Pitto-Barry, A.; Williams, R. J.; Willcock, H.; Kirby, N.; Chapman, E.; O'Reilly, R. K. CO2/pH-responsive particles with built-in fluorescence read-out. Polym. Chem. 2016, 7(38), 5943−5948  doi: 10.1039/C6PY01254J

    45. [45]

      Yu, B.; Zhao, Y. CO2-responsive fluorescent hyperbranched poly(ether amine)s. Polym. Chem. 2017, 8(28), 4132−4139  doi: 10.1039/C7PY00626H

    46. [46]

      Wei, H.; Zhang, J.; Shi, N.; Liu, Y.; Zhang, B.; Zhang, J.; Wan, X. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide. Chem. Sci. 2015, 6(12), 7201−7205  doi: 10.1039/C5SC02020D

    47. [47]

      Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Water-soluble polymers. 81. direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 2001, 34(7), 2248−2256  doi: 10.1021/ma0018087

    48. [48]

      Hu, B.; Henn, D. M.; Wright, R. A.; Zhao, B. Hybrid micellar hydrogels of a thermosensitive ABA triblock copolymer and hairy nanoparticles: effect of spatial location of hairy nanoparticles on gel properties. Langmuir 2014, 30(37), 11212−11224  doi: 10.1021/la503091a

    49. [49]

      Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal. Chem. 2003, 75(21), 5926−5935  doi: 10.1021/ac0346914

  • 加载中
    1. [1]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    2. [2]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    3. [3]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    4. [4]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    5. [5]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    6. [6]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    7. [7]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    8. [8]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    9. [9]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    10. [10]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    11. [11]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    12. [12]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    13. [13]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    14. [14]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    15. [15]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    16. [16]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    17. [17]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    20. [20]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

Metrics
  • PDF Downloads(0)
  • Abstract views(1036)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return