Citation: Xiao-Hui Shi, Li Chen, Bo-Wen Liu, Jia-Wei Long, Ying-Jun Xu, Yu-Zhong Wang. Carbon Fibers Decorated by Polyelectrolyte Complexes toward Their Epoxy Resin Composites with High Fire Safety[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1375-1384. doi: 10.1007/s10118-018-2164-1 shu

Carbon Fibers Decorated by Polyelectrolyte Complexes toward Their Epoxy Resin Composites with High Fire Safety

  • Corresponding author: Yu-Zhong Wang, yzwang@scu.edu.cn
  • Received Date: 18 May 2018
    Revised Date: 28 May 2018
    Accepted Date: 28 May 2018
    Available Online: 4 July 2018

  • The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber (CF) composites. To this end, a facile interfacial strategy for fabricating flame-retardant carbon fibers decorated by bio-based polyelectrolyte complexes (PEC) consisting of chitosan (CH) and ammonium polyphosphate (APP) was developed, and its corresponding fire-retarded epoxy resin composites (EP/(PEC@CF)) without any other additional flame retardants were prepared. The decorated CFs were characterized by SEM-EDX, XPS and XRD, indicating that the flame-retardant PEC coating was successfully constructed on the surface of CF. Thanks to the nitrogen- and phosphorous-containing PEC, the resulting composites exhibited excellent flame retardancy as the limiting oxygen index (LOI) increased from 31.0% of EP/CF to 40.5% and UL-94 V-0 rating was achieved with only 8.1 wt% PEC. EP/(PEC8.1@CF) also performed well in cone calorimetry with the decrease of peak-heat release rate (PHRR) and smoke production rate (SPR) by 50.0% and 30.4%, respectively, and the value of fire growth rate (FIGRA) was also reduced to 3.41 kW·m−2·s−1 from 4.84 kW·m−2·s−1, suggesting a considerably enhanced fire safety. Furthermore, SEM images of the burning residues revealed that the PEC coating exhibited the dominant flame-retardant activity in condensed phase via the formation of compact phosphorus-rich char. In addition, the impact strength of the composite was improved, together with no obvious deterioration of flexural properties and glass transition temperature. Taking advantage of the features, the PEC-decorated carbon fibers and the relevant composites fabricated by the cost-effective and facile strategy would bring more chances for widespread applications.
  • 加载中
    1. [1]

      Yang, X. L.; Li, K.; Xu, M. Z.; Liu, X. B. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite materials. Chinese J. Polym. Sci. 2017, 36(1), 106−112

    2. [2]

      Nunna, S.; Creighton, C.; Fox, B. L.; Naebe, M.; Maghe, M.; Tobin, M. J.; Bambery, K.; Vongsvivut, J.; Hameed, N. The effect of thermally induced chemical transformations on the structure and properties of carbon fibre precursors. J. Mater. Chem. A 2017, 5(16), 7372−7382  doi: 10.1039/C7TA01022B

    3. [3]

      Xu, Y. J.; Wang, J.; Tan, Y.; Qi, M.; Chen, L.; Wang, Y. Z. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem. Eng. J. 2018, 337, 30−39  doi: 10.1016/j.cej.2017.12.086

    4. [4]

      Shen, D.; Xu, Y. J.; Long, J. W.; Shi, X. H.; Chen, L.; Wang, Y. Z. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: thermal stability, flame retardancy and pyrolysis behavior. J. Anal. Appl. Pyrolysis 2017, 128, 54−63  doi: 10.1016/j.jaap.2017.10.025

    5. [5]

      Li, W. W.; Kang, H. L.; Xu, J.; Liu, R. G. Effects of ultra-high temperature treatment on the microstructure of carbon fibers. Chinese J. Polym. Sci. 2017, 35(6), 764−772  doi: 10.1007/s10118-017-1922-9

    6. [6]

      Xu, M. J.; Xia, S. Y.; Liu, C.; Li, B. Preparation of poly(phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chinese J. Polym. Sci. 2018, 36(5), 655−664  doi: 10.1007/s10118-018-2036-8

    7. [7]

      Liao, D. J.; Xu, Q. K.; McCabe, R. W.; Babu, H. V.; Hu, X. P.; Pan, N.; Wang, D. Y.; Hull, T. R. Ferrocene-based nonphosphorus copolymer: synthesis, high-charring mechanism, and its application in fire retardant epoxy resin. Ind. Eng. Chem. Res. 2017, 56(44), 12630−12643  doi: 10.1021/acs.iecr.7b02980

    8. [8]

      Rajaei, M.; Wang, D. Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Ind. Eng. Chem. Res. 2017, 113, 381−390

    9. [9]

      Xu, Y. J.; Chen, L.; Rao, W. H.; Qi, M.; Guo, D. M.; Liao, W.; Wang, Y. Z. Latent curing epoxy system with excellent thermal stability, flame retardancy and dielectric property. Chem. Eng. J. 2018, 347, 223−232  doi: 10.1016/j.cej.2018.04.097

    10. [10]

      Agrawal, S.; Narula, A. K. Synthesis, characterization of phosphorus containing diamide-diimide-tetraamines based on L-tryptophan amino acid and their effect on flame retardancy of epoxy resins. Chinese J. Polym. Sci. 2014, 32(2), 197−208  doi: 10.1007/s10118-014-1392-2

    11. [11]

      Aschberger, K.; Campia, I.; Pesudo, L. Q.; Radovnikovic, A.; Reina, V. Chemical alternatives assessment of different flame retardants-A case study including multi-walled carbon nanotubes as synergist. Environ. Int. 2017, 101, 27−45  doi: 10.1016/j.envint.2016.12.017

    12. [12]

      Curran, I. H.; Liston, V.; Nunnikhoven, A.; Caldwell, D.; Scuby, M. J.; Pantazopoulos, P.; Rawn, D. F.; Coady, L.; Armstrong, C.; Lefebvre, D. E. Toxicologic effects of 28-day dietary exposure to the flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in F344 Rats. Toxicology 2017, 377, 1−13  doi: 10.1016/j.tox.2016.12.001

    13. [13]

      Liao, S. F.; Deng, C.; Huang, S. C.; Cao, J. Y.; Wang, Y. Z. An efficient halogen-free flame retardant for polyethylene: piperazinemodified ammonium polyphosphates with different structures. Chinese J. Polym. Sci. 2016, 34(11), 1339−1353  doi: 10.1007/s10118-016-1855-8

    14. [14]

      Jian, R.; Wang, P.; Duan, W.; Wang, J.; Zheng, X.; Weng, J. Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind. Eng. Chem. Res. 2016, 55(44), 11520−11527  doi: 10.1021/acs.iecr.6b03416

    15. [15]

      Rao, W. H.; Xu, H. X.; Xu, Y. J.; Qi, M.; Liao, W.; Xu, S.; Wang, Y. Z. Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem. Eng. J. 2018, 343, 198−206  doi: 10.1016/j.cej.2018.03.013

    16. [16]

      Sun, J.; Yu, Z.; Wang, X.; Wu, D. Synthesis and performance of cyclomatrix polyphosphazene derived from trispiro-cyclotriphosphazene as a halogen-free nonflammable material. ACS Sustain. Chem. Eng. 2013, 2(2), 231−238

    17. [17]

      Wang, W.; Wen, P.; Zhan, J.; Hong, N.; Cai, W.; Gui, Z.; Hu, Y. Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym. Degrad. Stab. 2017, 144, 454−463  doi: 10.1016/j.polymdegradstab.2017.09.011

    18. [18]

      Wang, X.; Zhou, S.; Guo, W. W.; Wang, P. L.; Xing, W.; Song, L.; Hu, Y. Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins. ACS Sustain. Chem. Eng. 2017, 5(4), 3409−3416  doi: 10.1021/acssuschemeng.7b00062

    19. [19]

      Du S. L.; Lin X. B.; Jian, R. K.; Deng C.; Wang Y. Z. Flame-retardant wrapped ramie fibers towards suppressing " candlewick effect” of polypropylene/ramie fiber composites. Chinese J. Polym. Sci. 2015, 33(1), 84−94  doi: 10.1007/s10118-015-1560-z

    20. [20]

      Tai, Q.; Hu, Y.; Yuen, R. K. K.; Song, L.; Lu, H. Synthesis, structure-property relationships of polyphosphoramides with high char residues. J. Mater. Chem. 2011, 21(18), 6621−6627  doi: 10.1039/c0jm03959d

    21. [21]

      Jiang, S.; Shi, Y.; Qian, X.; Xu, H.; Lo, S.; Gui, Z. Synthesis of a novel phosphorus- and nitrogen-containing acrylate and its performance as an intumescent flame retardant for epoxy acrylate. Ind. Eng. Chem. Res. 2013, 52(49), 17442−17450  doi: 10.1021/ie4028439

    22. [22]

      Tan, Y.; Shao, Z. B.; Chen, X. F.; Long, J. W.; Chen, L.; Wang, Y. Z. Novel multifunctional organic-inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Interfaces 2015, 7(32), 17919−17928  doi: 10.1021/acsami.5b04570

    23. [23]

      Tan, Y.; Shao, Z. B.; Yu, L. X.; Xu, Y. J.; Rao, W. H.; Chen, L.; Wang, Y. Z. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: Thermal stability, flame retardancy and smoke suppression. Polym. Degrad. Stab. 2016, 131, 62−70  doi: 10.1016/j.polymdegradstab.2016.07.004

    24. [24]

      Tan, Y.; Shao, Z. B.; Yu, L. X.; Long, J. W.; Qi, M.; Chen, L.; Wang, Y. Z. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polym. Chem. 2016, 7(17), 3003−3012  doi: 10.1039/C6PY00434B

    25. [25]

      Li, C.; Kang, N. J.; Labrandero, S. D.; Wan, J.; González, C.; Wang, D. Y. Synergistic effect of carbon nanotube and polyethersulfone on flame retardancy of carbon fiber reinforced epoxy composites. Ind. Eng. Chem. Res. 2013, 53(3), 1040−1047

    26. [26]

      Hu, S.; Song, L.; Pan, H.; Hu, Y.; Gong, X. Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure. J. Anal. Appl. Pyrolysis 2012, 97, 109−115  doi: 10.1016/j.jaap.2012.06.003

    27. [27]

      Liu, X.; Gu, X.; Sun, J.; Zhang, S. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydr. Polym. 2017, 167, 356−363  doi: 10.1016/j.carbpol.2017.03.011

    28. [28]

      Chen, C.; Gu, X.; Jin, X.; Sun, J.; Zhang, S. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Carbohydr. Polym. 2017, 157, 1586−1593  doi: 10.1016/j.carbpol.2016.11.035

    29. [29]

      Yang, J. C.; Cao, Z. J.; Wang, Y. Z.; Schiraldi, D. A. Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer 2015, 66, 86−93  doi: 10.1016/j.polymer.2015.04.022

    30. [30]

      Deng, S. B.; Liao, W.; Yang, J. C.; Cao, Z.; Wang, Y. Z. Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings. Ind. Eng. Chem. Res. 2016, 55(27), 7239−7248  doi: 10.1021/acs.iecr.6b00532

    31. [31]

      Amin, K. A. M.; Panhuis, M. I. H. Polyelectrolyte complex materials from chitosan and gellan gum. Carbohydr. Polym. 2011, 86(1), 352−358  doi: 10.1016/j.carbpol.2011.04.035

    32. [32]

      Sukhishvili, S. A.; Kharlampieva, E.; Izumrudov, V. Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules 2006, 39(26), 8873−8881  doi: 10.1021/ma061617p

    33. [33]

      Yang, J. C.; Liao, W.; Deng, S. B.; Cao, Z. J.; Wang, Y. Z. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydr. Polym. 2016, 151, 434−440  doi: 10.1016/j.carbpol.2016.05.087

    34. [34]

      Shao, Z. B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M. J.; Chen, L.; Wang, Y. Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A 2014, 2(34), 13955−13965  doi: 10.1039/C4TA02778G

    35. [35]

      Kong, Q. Q.; Liu, Z.; Gao, J. G.; Chen, C. M.; Zhang, Q.; Zhou, G.; Tao, Z. C.; Zhang, X. H.; Wang, M. Z.; Li, F. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 2014, 24(27), 4222−4228  doi: 10.1002/adfm.v24.27

    36. [36]

      Koester, K. J.; Ager Iii, J.; Ritchie, R. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 2008, 7(8), 672−677  doi: 10.1038/nmat2221

    37. [37]

      Ladani, R. B.; Ravindran, A. R.; Wu, S.; Pingkarawat, K.; Kinloch, A. J.; Mouritz, A. P.; Ritchie, R. O.; Wang, C. H. Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Compos. Sci. Technol. 2016, 131, 98−109  doi: 10.1016/j.compscitech.2016.06.005

    38. [38]

      Zhao, M.; Meng, L.; Ma, L.; Wu, G.; Xie, F.; Ma, L.; Wang, W.; Jiang, B.; Huang, Y. Stepwise growth of melamine-based dendrimers onto carbon fibers and the effects on interfacial properties of epoxy composites. Compos. Sci. Technol. 2017, 138, 144−150  doi: 10.1016/j.compscitech.2016.11.013

    39. [39]

      Wu, G.; Ma, L.; Liu, L.; Wang, Y.; Xie, F.; Zhong, Z.; Zhao, M.; Jiang, B.; Huang, Y. Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes. Mater. Design 2016, 89, 1343−1349  doi: 10.1016/j.matdes.2015.10.016

    40. [40]

      Zhang, Z.; Yuan, L.; Liang, G.; Gu, A. A strategy and mechanism of fabricating flame retarding glass fiber fabric reinforced vinyl ester composites with simultaneously improved thermal stability, impact and interlaminar shear strengths. Polym. Degrad. Stab. 2016, 125, 49−58  doi: 10.1016/j.polymdegradstab.2016.01.002

    41. [41]

      Zhao, F.; Huang, Y.; Liu, L.; Bai, Y.; Xu, L. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 2011, 49(8), 2624−2632  doi: 10.1016/j.carbon.2011.02.026

    42. [42]

      González-Domínguez, J. M.; Ansón-Casaos, A.; Díez-Pascual, A. M.; Ashrafi, B.; Naffakh, M.; Backman, D.; Stadler, H.; Johnston, A.; Gómez, M.; Martinez, M. T. Solvent-free preparation of high-toughness epoxy-SWNT composite materials. ACS Appl. Mater. Interfaces 2011, 3(5), 1441−1450  doi: 10.1021/am101260a

    43. [43]

      Lin, M. S.; Lee, S. T. Mechanical behaviours of fully and semi-interpenetrating polymer networks based on epoxy and acrylics. Polymer 1997, 38(1), 53−58  doi: 10.1016/S0032-3861(96)00484-3

    44. [44]

      Zhao, X.; Yang, L.; Martin, F. H.; Zhang, X. Q.; Wang, R.; Wang, D. Y. Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (GRE): Flammability, mechanical and thermal stability properties. Compos. Part B- Eng. 2017, 110, 511−519  doi: 10.1016/j.compositesb.2016.10.090

  • 加载中
    1. [1]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    2. [2]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    3. [3]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    6. [6]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    7. [7]

      Bin ZhaoHeping LuoJiaqing LiuSha ChenHan XuYu LiaoXue Feng LuYan QingYiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919

    8. [8]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    9. [9]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    10. [10]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    11. [11]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    12. [12]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    13. [13]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    14. [14]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    15. [15]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    16. [16]

      Hongyi LiHuiyun WenHe ZhangJin LiXiang CaoJiaqing ZhangYutao ZhengSaipeng HuangWeiming XueXiaojun Cai . Polymeric micelle-hydrogel composites design for biomedical applications. Chinese Chemical Letters, 2025, 36(5): 110072-. doi: 10.1016/j.cclet.2024.110072

    17. [17]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    18. [18]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    19. [19]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(0)
  • Abstract views(919)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return