Citation: Teng Wu, Min Tan, Heng-Ye Gong, Yong Wang, Xin-Tao Shuai. Co-delivery of Andrographolide and Notch1-targeted siRNA to Macrophages with Polymer-based Nanocarrier for Enhanced Anti-inflammation[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1312-1320. doi: 10.1007/s10118-018-2158-z shu

Co-delivery of Andrographolide and Notch1-targeted siRNA to Macrophages with Polymer-based Nanocarrier for Enhanced Anti-inflammation

  • Corresponding author: Xin-Tao Shuai, shuaixt@mail.sysu.edu.cn
  • Received Date: 25 April 2018
    Revised Date: 9 May 2018
    Accepted Date: 10 May 2018
    Available Online: 22 June 2018

  • Chronic inflammatory responses induced by macrophages play a pivotal role in the progression of atherosclerosis. In the present study, a multifunctional nanocarrier based on poly(ethylene glycol)-block-poly(L-aspartic acid) grafted with diethylenetriamine, lysine and cholic acid (PEG-PAsp(DETA)-Lys-CA2) polymer was synthesized for co-delivery of andrographolide and siRNA targeting Notch1 gene to alleviate the inflammatory response in macrophages. The nanocarrier exerted low cytotoxicity as well as high performance in drug/siRNA co-delivery. In vitro studies demonstrated the co-delivery of andrographolide and Notch1 siRNA not only significantly inhibited lipopolysaccharide (LPS)-activated interleukin-6 (IL-6) and monocytes chemotactic protein 1 (MCP-1) expression as well as blocked nuclear factor-κB (NF-κB) signal activation, but also interfered the Notch1 gene expression and increased anti-inflammatory cytokines such as interleukin-10 (IL-10) and arginase-1 expression obviously in macrophages. These results suggested that the combination therapy based on Notch1 siRNA and andrographolide co-delivered nanocarrier, i.e. suppressing the expression of pro-inflammatory cytokines while simultaneously increasing anti-inflammatory factors expression, be a feasible strategy for atherosclerosis treatment.
  • 加载中
    1. [1]

      Falk, E.; Nakano, M.; Bentzon, J. F.; Finn, A. V.; Virmani, R. Update on acute coronary syndromes: the pathologists' view. Eur. Heart J. 2013, 34(10), 719−728  doi: 10.1093/eurheartj/ehs411

    2. [2]

      Ouriel, K. Peripheral arterial disease. Lancet 2001, 358(9289), 1257−1264  doi: 10.1016/S0140-6736(01)06351-6

    3. [3]

      Parisi, L.; Gini, E.; Baci, D.; Tremolati, M.; Fanuli, M.; Bassani, B.; Farronato, G.; Bruno, A.; Mortara, L. Macrophage polarization in chronic inflammatory diseases: killers or builders? J. Immunol. Res 2018, 8917804

    4. [4]

      Colin, S.; Chinetti-Gbaguidi, G.; Staels, B. Macrophage pheno-types in atherosclerosis. Immunol. Rev. 2014, 262(1), 153−166  doi: 10.1111/imr.2014.262.issue-1

    5. [5]

      Rudijanto, A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones. 2007, 39(2), 86−93

    6. [6]

      Zheng, L.; Wu, T.; Zeng, C.; Li, X.; Li, X.; Wen, D.; Ji, T.; Lan, T.; Xing, L.; Li, J.; Wang, L. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice. Atherosclerosis 2016, 244, 179−187  doi: 10.1016/j.atherosclerosis.2015.11.009

    7. [7]

      Wang, Y. J.; Wang, J. T.; Fan, Q. X.; Geng, J. G. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Res. 2007, 17(11), 933−941  doi: 10.1038/cr.2007.89

    8. [8]

      Ji, X. Q.; Li, C. Z.; Ou, Y. T.; Li, N.; Yuan, K.; Yang, G. Z.; Chen, X. Y.; Yang, Z. C.; Liu, B.; Cheung, W. W.; Lan, T. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-kappaB pathway. Mol. Cell Endocrinol. 2016, 437(C), 268−279  doi: 10.1016/j.mce.2016.06.029

    9. [9]

      Lan, T.; Wu, T.; Gou, H. J.; Zhang, Q. Q.; Li, J. C.; Qi, C. L.; He, X. D.; Wu, P. X.; Wang, L. J. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. J. Cell Biochem. 2013, 114(11), 2562−2568  doi: 10.1002/jcb.v114.11

    10. [10]

      Dai, J. W.; Lin, Y. Y.; Duan, Y. F.; Li, Z. X.; Zhou, D. L.; Chen, W. S.; Wang, L. J.; Zhang, Q. Q. Andrographolide inhibits angiogenesis by inhibiting the mir-21-5p/TIMP3 signaling pathway. Int. J. Biol. Sci. 2017, 13(5), 660−668  doi: 10.7150/ijbs.19194

    11. [11]

      Huang, C.; Liu, X. J.; Qun, Zhou.; Xie, J.; Ma, T. T.; Meng, X. M.; Li, J. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int. Immunopharmacol. 2016, 32, 46−54  doi: 10.1016/j.intimp.2016.01.009

    12. [12]

      Singla, D. K.; Wang, J.; Singla, R. Primary human monocytes differentiate into M2 macrophages and involve Notch-1 pathway. Can. J. Physiol. Pharmacol. 2017, 95(3), 288−294  doi: 10.1139/cjpp-2016-0319

    13. [13]

      Su, X. P.; Qian, C.; Zhang, Q.; Hou, J.; Gu, Y.; Han, Y. M.; Chen, Y. J.; Jiang, M. H.; Cao, X. T. miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1. Nat. Commun. 2013, 4, 2903  doi: 10.1038/ncomms3903

    14. [14]

      Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, P. N.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E.; Munisamy, M.; Falzone, R.; Harrop, J.; Cehelsky, J.; Bettencourt, B. R.; Geissler, M.; Butler, J. S.; Sehgal, A.; Meyers, R. E.; Chen, Q. M.; Borland, T.; Hutabarat, R. M.; Clausen, V. A.; Alvarez, R.; Fitzgerald, K.; Gamba-Vitalo, C.; Nochur, S. V.; Vaishnaw, A. K.; Sah, D. W. Y.; Gollob, J. A.; Suhr, O. B. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 2013, 369(9), 819−829  doi: 10.1056/NEJMoa1208760

    15. [15]

      Guo, Y.; Wang, J.; Zhang, L.; Shen, S.; Guo, R. M.; Yang, Y.; Chen, W. J.; Wang, Y. R.; Chen, G. H.; Shuai, X. T. Theranostical nanosystem-mediated identification of an oncogene and highly effective therapy in hepatocellular carcinoma. Hepatology 2016, 63(4), 1240−1255  doi: 10.1002/hep.28409

    16. [16]

      Lu, L. J.; Wang, Y.; Cao, M. H.; Chen, M. W.; Lin, B. L.; Duan, X. H.; Zhang, F.; Mao, J. J.; Shuai, X. T.; Shen, J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv. 2017, 7(25), 15041−15052  doi: 10.1039/C7RA00345E

    17. [17]

      Zhang, L.; Xiao, H.; Li, J. G.; Cheng, D.; Shuai, X. T. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy. Nanoscale 2016, 8(25), 12608−12617  doi: 10.1039/C5NR07868G

    18. [18]

      Li, Z. R.; Li, J. G.; Huang, J. S.; Zhang, J.; Cheng, D.; Shuai, X. T. Synthesis and characterization of pH-responsive copolypeptides vesicles for siRNA and chemotherapeutic drug co-delivery. Macromol. Biosci. 2015, 15(11), 1497−1506  doi: 10.1002/mabi.v15.11

    19. [19]

      Yin, T. H.; Wang, P.; Li, J. G.; Wang, Y. R.; Zheng, B. W.; Zheng, R. Q.; Cheng, D.; Shuai, X. T. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 2014, 35(22), 5932−5943  doi: 10.1016/j.biomaterials.2014.03.072

    20. [20]

      Wang, W. W.; Cheng, D.; Gong, F. M.; Miao, X. M.; Shuai, X. T. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv. Mater. 2012, 24(1), 115−120  doi: 10.1002/adma.201104066

    21. [21]

      Wang, Y.; Xiao, H.; Fang, J.; Yu, X. S.; Su, Z. W.; Cheng, D.; Shuai, X. T. Construction of negatively charged and environment-sensitive nanomedicine for tumor-targeted efficient siRNA delivery. Chem. Commun. 2016, 52(6), 1194−1197  doi: 10.1039/C5CC09181K

    22. [22]

      Luo, J. T.; Xiao, K.; Li, Y. P.; Lee, J. S.; Shi, L. F.; Tan, Y. H.; Xing, L.; Cheng, R. H.; Liu, G. Y.; Lam, K. S. Well-defined, size-tunable, multifunctional micelles for efficient paclitaxel delivery for cancer treatment. Bioconjug. Chem. 2010, 21(7), 1216−1224  doi: 10.1021/bc1000033

    23. [23]

      Jiang, Y. X.; Wang, F.; Xu, H.; Liu, H.; Meng, Q. G.; Liu, W. H. Development of andrographolide loaded PLGA microspheres: Optimization, characterization and in vitro-in vivo correlation. Int. J. Pharmaceut. 2014, 475(1-2), 475−484  doi: 10.1016/j.ijpharm.2014.09.016

    24. [24]

      Ta, H. T.; Truong, N. P.; Whittaker, A. K.; Davis, T. P.; Peter, K. The effects of particle size, shape, density and flow chara-cteristics on particle margination to vascular walls in cardio-vascular diseases. Expert Opin. Drug Del. 2018, 15(1), 33−45  doi: 10.1080/17425247.2017.1316262

    25. [25]

      Kamaly, N.; Fredman, G.; Subramanian, M.; Gadde, S.; Pesic, A.; Cheung, L.; Fayad, Z. A.; Langer, R.; Tabas, I.; Farokhzad, O. C. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. P. Natl. Acad. Sci. 2013, 110(16), 6506−6511  doi: 10.1073/pnas.1303377110

    26. [26]

      Xuan, Y.; Gao, Y.; Huang, H.; Wang, X. X.; Cai, Y.; Luan, Q. X. Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with porphyromonas gingivalis. Inflammation 2017, 40(5), 1631−1642  doi: 10.1007/s10753-017-0603-8

    27. [27]

      Li, Y.; He, S.; Tang, J.; Ding, N.; Chu, X.; Cheng, L.; Ding, X.; Liang, T.; Feng, S.; Rahman, S. U. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-kappaB/MAPK signaling pathway. Evid. Based Compl. Alt. Med. 2017, 8248142

    28. [28]

      Zhao, N.; Wang, R. Z.; Zhou, L. J.; Zhu, Y.; Gong, J.; Zhuang, S. M. MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol. Cancer 2014, 13, 35  doi: 10.1186/1476-4598-13-35

    29. [29]

      Singla, D. K.; Wang, J.; Singla, R. Primary human monocytes differentiate into M2 macrophages and involve Notch-1 pathway. Can. J. Physiol. Pharmacol. 2017, 95(3), 288−294  doi: 10.1139/cjpp-2016-0319

  • 加载中
    1. [1]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    2. [2]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    3. [3]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    4. [4]

      Liqing ChenZheming ZhangYanhong LiuChenfei LiuCongcong XiaoLiming GongMingji JinZhonggao GaoWei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228

    5. [5]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    6. [6]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    7. [7]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    8. [8]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    9. [9]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    10. [10]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    11. [11]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    12. [12]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    13. [13]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    14. [14]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    15. [15]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    16. [16]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    17. [17]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    18. [18]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    19. [19]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    20. [20]

      Zhexin ChenYuqing ShiFang ZhongKai ZhangFurong ZhangShenghong XieZhongbin ChengQian ZhouYi-You HuangHai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956

Metrics
  • PDF Downloads(0)
  • Abstract views(968)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return