Citation: Heng-Xue Xiang, Fatemeh Zabihi, Xu-Zhen Zhang, Mei-Fang Zhu. The Crystallization, Melting Behaviors and Thermal Stability of Cross-linked Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Octavinyloctasilasesquioxane[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1353-1360. doi: 10.1007/s10118-018-2157-0 shu

The Crystallization, Melting Behaviors and Thermal Stability of Cross-linked Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Octavinyloctasilasesquioxane

  • Corresponding author: Mei-Fang Zhu, zhumf@dhu.edu.cn
  • Received Date: 10 March 2018
    Revised Date: 10 April 2018
    Accepted Date: 10 May 2018
    Available Online: 11 June 2018

  • A series of cross-linked poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/octavinyloctasilasesquioxane (PHBV/OVS) composites were obtained by a simple melt reactive processing technique. Dicumyl peroxide (DCP) and OVS were employed as a free radical initiator and a cross-linking agent, respectively. The chemical structure of these produced composites were identified by 1H/13C/29Si-nuclear magnetic resonance spectroscopy (1H/13C/29Si-NMR) and Fourier transform infrared spectroscopy (FTIR). The melting behavior, non-isothermal crystallization, spherulite morphology and thermal stability property of PHBV/OVS composites were also investigated. The nucleation behaviors and crystallization rate of PHBV/OVS were significantly enhanced with the formation of cross-linked networks with different side-chains and cross-linking points. The red shift of crystalline peak temperature with addition of a small amount of OVS content evidenced the higher crystalline ability compared with the neat PHBV. However there was a threshold content, beyond which the crystallization rate weakened again. Additionally, the cross-linked structure of PHBV/OVS composites could be adjusted by changing the amount of OVS.
  • 加载中
    1. [1]

      Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxy-alkanoates. Prog. Polym. Sci. 2013, 38(3), 536−583

    2. [2]

      Yang, W. B.; Zhang, L.; Guo, Y. L.; Jiang, Z. N.; He, F. F.; Xie, C. Q.; Fan, J. H.; Wu, J. Y.; Zhang, K. Novel segregated- structure phase change materials composed of paraffin@ graphene microencapsules with high latent heat and thermal conductivity. J. Mater. Sci. 2018, 53(4), 2566−2575  doi: 10.1007/s10853-017-1693-2

    3. [3]

      Wang, H.; Zhao, L.; Song, G. L.; Tang, G. Y.; Shi, X. H. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization. Sol. Energ. Mater. Sol. C 2018, 175, 102−110  doi: 10.1016/j.solmat.2017.09.015

    4. [4]

      Iwata, T.; Aoyagi, Y.; Fujita, M.; Yamane, H.; Doi, Y.; Suzuki, Y.; Takeuchi, A.; Uesugi, K. Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-Ray diffraction with synchrotron radiation. Macromol. Rapid Commun. 2004, 25(11), 1100−1104  doi: 10.1002/(ISSN)1521-3927

    5. [5]

      Chen, Z.; Xiang, H.; Hu, Z.; Ni, Z.; Zhu, M. Enhanced mechanical properties of melt-spun bio-based PHBV fibers: effect of heterogeneous nucleation and drawing process. Acta Polymerica Sinica (in Chinese) 2017, (7), 1121−1129

    6. [6]

      Diez-Pascual, A. M.; Diez-Vicente, A. L. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionano- composites with antimicrobial function for food packaging. ACS Appl. Mater. Interfaces 2014, 6(12), 9822−9834  doi: 10.1021/am502261e

    7. [7]

      Wang, Y. Y.; Lu, L. X.; Shi, J. C.; Wang, H. F.; Xiao, Z. D.; Huang, N. P. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules 2011, 12(3), 551−559  doi: 10.1021/bm100886w

    8. [8]

      Josefine Fischer, J.; Aoyagi, Y.; Enoki, M.; Doi, Y.; Iwata, T. Mechanical properties and enzymatic degradation of poly([R]-3-hydroxybutyrate-co-[R]-3-hydroxyhexanoate) uniaxially cold-drawn films. Polym. Degrad. Stab. 2004, 83(3), 453−460  doi: 10.1016/j.polymdegradstab.2003.08.006

    9. [9]

      Lu, S. F.; Shen, T. W.; Xing, J. W.; Song, Q. W.; Shao, J. F.; Zhang, J.; Xin, C. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization. Mater. Lett. 2018, 211, 36−39  doi: 10.1016/j.matlet.2017.09.074

    10. [10]

      Xiang, H. X.; Wang, S. C.; Wang, R. L.; Zhou, Z.; Peng, C.; Zhu, M. F. Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Sci. China Chem. 2013, 56(6), 716−723  doi: 10.1007/s11426-013-4837-5

    11. [11]

      Xiang, H. X.; Wen, X. S.; Miu, X. H.; Li, Y.; Zhou, Z.; Zhu, M. F. Thermal depolymerization mechanisms of poly(3- hydroxybutyrate-co-3-hydroxyvalerate). Prog. Nat. Sci.: Mater. 2016, 26(1), 58−64  doi: 10.1016/j.pnsc.2016.01.007

    12. [12]

      Ye, H. M.; Li, H.; Yang, Y. P. Crystallization behavior and phase transition of poly(R-3-hydroxydecanoate). Colloid Polym. Sci. 2016, 294(4), 795−799  doi: 10.1007/s00396-016-3849-z

    13. [13]

      Wang, S.; Chen, W.; Xiang, H.; Yang, J.; Zhou, Z.; Zhu, M. Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers 2016, 8(8), 273  doi: 10.3390/polym8080273

    14. [14]

      Nocita, D.; Forte, G.; Drakopoulos, S. X.; Visco, A.; Gianporcaro, A.; Ronca, S. Processing and characterization of bio-polyester reactive blends: From thermoplastic blends to cross-linked networks. Polymer 2017, 132, 252−263  doi: 10.1016/j.polymer.2017.10.069

    15. [15]

      Bian, Y. J.; Han, C. Y.; Han, L. J.; Lin, H. J.; Zhang, H. L.; Bian, J. J.; Dong, L. S. Toughening mechanism behind intriguing stress-strain curves in tensile tests of highly enhanced compatibilization of biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. RSC Adv. 2014, 4(79), 41722−41733  doi: 10.1039/C4RA06199C

    16. [16]

      Wu, N. J.; Zhang, H.; Fu, G. L. Super-tough poly(lactide) thermoplastic vulcanizates based on modified natural rubber. ACS Sustain. Chem. Engineer. 2017, 5(1), 78−84  doi: 10.1021/acssuschemeng.6b02197

    17. [17]

      You, J.; Yu, W.; Zhou, C. Accelerated crystallization of poly(lactic acid): synergistic effect of poly(ethylene glycol), dibenzylidene sorbitol, and long-chain branching. Ind. Engineer. Chem. Res. 2014, 53(3), 1097−1107  doi: 10.1021/ie402358h

    18. [18]

      Bian, Y. J.; Han, L. J.; Han, C. Y.; Lin, H. J.; Zhang, H. L.; Bian, J. J.; Dong, L. S. Intriguing crystallization behavior and rheological properties of radical-based crosslinked biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). CrystEngComm, 2014, 16(13), 2702−2714  doi: 10.1039/c3ce42498g

    19. [19]

      Pathaweeisariyakul, T.; Narkchamnan, K.; Thitisak, B.; Rungswang, W.; Yau, W. W. An alternative method for long chain branching determination by triple-detector gel permeation chromatography. Polymer 2016, 107, 122−129  doi: 10.1016/j.polymer.2016.11.007

    20. [20]

      Xiang, H. X.; Chen, W.; Chen, Z. Y.; Sun, B.; Zhu, M. F. Significant accelerated crystallization of long chain branched poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high nucleation temperature under fast cooling rate. Compos. Sci. Technol. 2017, 142, 207−213  doi: 10.1016/j.compscitech.2017.02.016

    21. [21]

      Wang, J.; Li, B.; Wang, X.; Yang, F.; Shen, H.; Wu, D. Morphological evolution of self-assembled structures induced by the molecular architecture of supra-amphiphiles. Langmuir 2016, 32(51), 13706−13715  doi: 10.1021/acs.langmuir.6b03550

    22. [22]

      Zhang, L.; Tang, H.; Hou, G.; Shen, Y.; Deng, F. The domain structure and mobility of semi-crystalline poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3- hydroxyvalerate): A solid-state NMR study. Polymer 2007, 48(10), 2928−2938  doi: 10.1016/j.polymer.2007.03.026

    23. [23]

      Xiang, H. X.; Chen, S. H.; Cheng, Y. H.; Zhou, Z.; Zhu, M. F. Structural characteristics and enhanced mechanical and thermal properties of full biodegradable tea polyphenol/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films. eXPRESS Polym. Lett. 2013, 7(9), 778−786  doi: 10.3144/expresspolymlett.2013.75

    24. [24]

      Xu, H.; Yang, B.; Wang, J.; Guang, S.; Li, C. Preparation, thermal properties, and Tg increase mechanism of poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites. Macromolecules 2005, 38(25), 10455−10460  doi: 10.1021/ma0516687

    25. [25]

      Zhang, Y.; Wang, C. L.; Du, H. N.; Li, X. P.; Mi, D. S.; Zhang, X. W.; Wang, T.; Zhang, J. Promoting crystallization of polylactide by the formation of crosslinking bundles. Mater. Lett. 2014, 117, 171−174  doi: 10.1016/j.matlet.2013.12.005

    26. [26]

      Ma, P. M.; Cai, X. X.; Wang, W.; Duan, F.; Shi, D. J.; Lemstra, P. J. Crystallization behavior of partially crosslinked poly(beta-hydroxyalkonates)/poly(butylene succinate) blends. J. Appl. Polym. Sci. 2014, 131(21), 41020

    27. [27]

      Li, S. Z.; Xiao, M. M.; Wei, D. F.; Xiao, H. N.; Hu, F. Z.; Zheng, A. N. The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 2009, 50(25), 6121−6128  doi: 10.1016/j.polymer.2009.10.006

  • 加载中
    1. [1]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    2. [2]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    3. [3]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    4. [4]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    5. [5]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    6. [6]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    7. [7]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    8. [8]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    9. [9]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    10. [10]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    11. [11]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    12. [12]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    13. [13]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    14. [14]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    15. [15]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    16. [16]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    17. [17]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    18. [18]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    19. [19]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    20. [20]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

Metrics
  • PDF Downloads(0)
  • Abstract views(936)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return