Citation: Guo-Dong Zhang, Lin Fan, Lan Bai, Min-Hui He, Lei Zhai, Song Mo. Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1394-1402. doi: 10.1007/s10118-018-2155-2 shu

Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity

  • Corresponding author: Lin Fan, fanlin@iccas.ac.cn
  • Received Date: 17 April 2018
    Revised Date: 7 May 2018
    Accepted Date: 8 May 2018
    Available Online: 12 June 2018

  • The mesoscopic simulation technique was applied to describe the phase separation behavior of polyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid) (PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend films containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached 1.16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway.
  • 加载中
    1. [1]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37(7), 907−974  doi: 10.1016/j.progpolymsci.2012.02.005

    2. [2]

      Tong, H.; Hu, C. C.; Yang, S. Y.; Ma, Y. P.; Guo, H. X.; Fan, L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer 2015, 69, 138−147  doi: 10.1016/j.polymer.2015.05.045

    3. [3]

      Wen, Y.; Liu, H.; Yang, S. Y.; Fan, L. Transparent and conductive indium tin oxide/polyimide films prepared by high-temperature radio-frequency magnetron sputtering. J. Appl. Polym. Sci. 2015, 132(44), 42753−42764  doi: 10.1002/app.42753

    4. [4]

      Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41−85  doi: 10.1016/j.progpolymsci.2016.03.001

    5. [5]

      Gu, J. W.; Lv, Z. Y.; Wu, Y. L.; Guo, Y. Q.; Tian, L. D.; Qiu, H.; Li, W. Z.; Zhang, Q. Y. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A-Appl. S. 2017, 94, 209−216  doi: 10.1016/j.compositesa.2016.12.014

    6. [6]

      Kuo, D. H.; Lin, C. Y.; Jhou, Y. C.; Cheng, J. Y.; Liou, G. S. Thermal conductive performance of organosoluble polyimide/BN and polyimide/(BN plus AlN) composite films fabricated by a solution-cast method. Polym. Compos. 2013, 34(2), 252−258  doi: 10.1002/pc.22396

    7. [7]

      Tsai, M. H.; Tseng, I. H.; Chiang, J. C.; Li, J. J. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl. Mater. Interfaces 2014, 6(11), 8639−8645  doi: 10.1021/am501323m

    8. [8]

      Yu, X. Y.; Qu, X. W.; Naito, K.; Zhang, Q. X. Synthesis, tensile, and thermal properties of polyimide/diamond nanocomposites. J. Reinf. Plast. Compos. 2011, 30(8), 661−670  doi: 10.1177/0731684411404457

    9. [9]

      Li, H. Y.; Ning, S. F.; Hu, H. B.; Bin, L.; Chen, W.; Chen, S. T. Synthesis and electrical properties of polyimide-Al2O3 composites. Chinese J. Polym. Sci. 2007, 25(3), 271−276  doi: 10.1142/S0256767907002102

    10. [10]

      Yu, S.; Lee, J. W.; Han, T. H.; Park, C.; Kwon, Y.; Hong, S. M.; Koo, C. M. Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl. Mater. Interfaces 2013, 5(22), 11618−11622  doi: 10.1021/am4030406

    11. [11]

      Choi, S.; Kim, K.; Nam, J.; Shim, S. E. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites. Carbon 2013, 60, 254−265  doi: 10.1016/j.carbon.2013.04.034

    12. [12]

      Li, T. L.; Hsu, S. L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J. Phys. Chem. B 2010, 114(20), 6825−6829  doi: 10.1021/jp101857w

    13. [13]

      Shoji, Y.; Higashihara, T.; Tokita, M.; Morikawa, J.; Watanabe, J.; Ueda, M. Thermal diffusivity of hexagonal boron nitride composites based on cross-linked liquid crystalline polyimides. ACS Appl. Mater. Interfaces 2013, 5(8), 3417−3423  doi: 10.1021/am400460p

    14. [14]

      Murakami, T.; Ebisawa, K.; Miyao, K.; Ando, S. Enhanced thermal conductivity in polyimide/silver particle composite films based on spontaneous formation of thermal conductive paths. J. Photopolym. Sci. Technol. 2014, 27(2), 187−191  doi: 10.2494/photopolymer.27.187

    15. [15]

      Cao, J. P.; Zhao, X.; Zhao, J.; Zha, J. W.; Hu, G. H.; Dang, Z. M. Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl. Mater. Interfaces 2013, 5(15), 6915−6924  doi: 10.1021/am401703m

    16. [16]

      Yuan, D. B.; Gao, Y. F.; Guo, Z. X.; Yu, J. Improved thermal conductivity of ceramic filler-filled polyamide composites by using PA6/PA66 1:1 blend as matrix. J. Appl. Polym. Sci. 2017, 134(40), 45371−45377  doi: 10.1002/app.v134.40

    17. [17]

      Yorifuji, D.; Ando, S. Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: Advantage of vertical double percolation structure. J. Mater. Chem. 2011, 21(12), 4402−4407  doi: 10.1039/c0jm04243a

    18. [18]

      Yorifuji, D.; Ando, S. Enhanced thermal diffusivity by vertical double percolation structures in polyimide blend films containing silver nano particles. Macromol. Chem. Phys. 2010, 211(19), 2118−2124  doi: 10.1002/macp.v211:19

    19. [19]

      Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 2010, 20(14), 2749−2752  doi: 10.1039/b924997d

    20. [20]

      Tanimoto, M.; Yamagata, T.; Miyata, K.; Ando, S. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 2013, 5(10), 4374−4382  doi: 10.1021/am400615z

    21. [21]

      Zhou, W.; Zuo, J.; Zhang, X.; Zhou, A. Thermal, electrical, and mechanical properties of hexagonal boron nitride-reinforced epoxy composites. J. Compos. Mater. 2013, 48(20), 2517−2526  doi: 10.1177/0021998313499953

    22. [22]

      Wang, C.; Paddison, S. J. Mesoscale modeling of hydrated morphologies of sulfonated polysulfone ionomers. Soft Matter 2014, 10(6), 819−830  doi: 10.1039/C3SM52330F

    23. [23]

      Zhong, T. P.; Ai, P. F.; Zhou, J. Structures and properties of pamam dendrimer: A multi-scale simulation study. Fluid Phase Equilib. 2011, 302(1-2), 43−47  doi: 10.1016/j.fluid.2010.09.037

    24. [24]

      Xue, Z. J.; Liu, X. Y.; Zhuang, Q. X.; Hu, K.; Han, Z. W. Molecular simulation of the effect of graft structure on the miscibility of high-impact polystyrene blends. Polym. Compos. 2012, 33(3), 430−435  doi: 10.1002/pc.v33.3

    25. [25]

      Yu, G.; Liu, J.; Zhou, J. Mesoscopic coarse-grained simulations of lysozyme adsorption. J. Phys. Chem. B 2014, 118(17), 4451−4460  doi: 10.1021/jp409326f

    26. [26]

      Zhuang, Q. X.; Xue, Z. J.; Liu, X. Y.; Yuan, Y. L.; Han, Z. W. Molecular simulation of miscibility of poly(2,6-dimethyl-1,4-phenylene ether)/poly(styrene-co-acrylonitrile) blend with the compatibilizer triblock terpolymer sbm. Polym. Compos. 2011, 32(10), 1671−1680  doi: 10.1002/pc.v32.10

    27. [27]

      Chen, H. Y.; Wu, J. H.; Luo, S. J.; Xi, H. X.; Qian, Y. Mesodyn and experimental approach to the structural fabrication and pore-size adjustment of SBA-15 molecular sieves. Adsorpt. Sci. Technol. 2009, 27(6), 579−592  doi: 10.1260/0263-6174.27.6.579

    28. [28]

      Luo, X.; Xie, S. J.; Huang, W.; Dai, B. N.; Lu, Z. Y.; Yan, D. Y. Effect of branching architecture on glass transition behavior of hyperbranched copolystyrenes: The experiment and simulation studies. Chinese J. Polym. Sci. 2015, 34(1), 77−87  doi: 10.1007/s10118-016-1730-7

    29. [29]

      Ouyang, Y. T.; Guo, H. X. Phase behavior of amphiphiles at liquid crystals/water interface: A coarse-grained molecular dynamics study. Chinese J. Polym. Sci. 2014, 32(10), 1298−1310  doi: 10.1007/s10118-014-1520-z

    30. [30]

      Tanaka, T.; Yamaguchi, K.; Yamamoto, S. Rhodamine-B-doped and Au(III)-doped PMMA film for three-dimensional multi-layered optical memory. Opt. Commun. 2002, 212(1-3), 45−50  doi: 10.1016/S0030-4018(02)01965-X

    31. [31]

      Kumacheva, E.; Kalinina, O.; Lilge, L. Three-dimensional arrays in polymer nanocomposites. Adv. Mater. 1999, 11(3), 231−234  doi: 10.1002/(ISSN)1521-4095

    32. [32]

      Chen, H.; Ginzburg, V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41−85  doi: 10.1016/j.progpolymsci.2016.03.001

  • 加载中
    1. [1]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    2. [2]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    3. [3]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    4. [4]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    5. [5]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    6. [6]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    7. [7]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    8. [8]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    9. [9]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    10. [10]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    11. [11]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    12. [12]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    13. [13]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    14. [14]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    15. [15]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    16. [16]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    19. [19]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    20. [20]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

Metrics
  • PDF Downloads(0)
  • Abstract views(972)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return