Citation: Hao-Yu Yu, Jiao Wang, Jian-Wei Shao, Dong Chen, Shi-Chao Wang, Li Wang, Wan-Tai Yang. Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1303-1311. doi: 10.1007/s10118-018-2153-4 shu

Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives

  • In our present work, a novel controlled radical polymerization system is developed based on xanthene-9-thione (XT). It was found that the radical polymerization of styrene (St) became controlled in the presence of a small amount of XT. At the early stage of the polymerization, the polymerization rate was relatively low and the as-formed polystyrene (PS) had low number-average molecular weight (Mn) and narrow polydispersity (Ð). After XT was consumed, the polymerization rate increased dramatically and the Mn of PS increased gradually with polymerization proceeding. When the polymerization of St was carried out with a proper molar ratio of initiator to XT and at an appropriate temperature, shortened slow polymerization stage and good control over Mn could be achieved. To further improve the regulating ability of XT, a series of substituent groups (―CF3, ―CH(CH3)2, ―N(CH3)2) were introduced onto the xanthene ring of XT, and the effects of these derivatives on the polymerization of St were investigated in detail. UV-Vis spectroscopy was carried out to monitor the concentration of XT during the polymerization and the chemical structure of the as-formed PS was fully characterized by 1H-NMR and ESI-MS analysis. A possible mechanism involving the formation and evolution of the cross-termination products was proposed to interpret the observed polymerization behavior.
  • 加载中
    1. [1]

      Mishra, A. K.; Choi, C.; Maiti, S.; Seo, Y.; Lee, K. S.; Kim, E.; Kim, J. K. Sequential synthesis of well-defined poly(vinyl acetate)-block-polystyrene and poly(vinyl alcohol)-block- polystyrene copolymers using difunctional chloroamide- xanthate iniferter. Polymer 2018, 139, 68−75  doi: 10.1016/j.polymer.2018.02.009

    2. [2]

      Kutcherlapati, S. R.; Koyilapu, R.; Jana, T. Poly(N-vinyl imidazole) grafted silica nanofillers: Synthesis by RAFT polymerization and nanocomposites with polybenzimidazole. J. Polym. Sci., Part A: Polym. Chem. 2018, 56(4), 365−375  doi: 10.1002/pola.v56.4

    3. [3]

      Díaz-Silvestre, S.; Saldívar-Guerra E.; Rivera-Vallejo, C.; Thomas, C. S.; Cabello-Romero, J.; Guerrero-Santos, R.; Jiménez-Regalado, E. Synthesis of associative block copolymers electrolytes via RAFT polymerization. Polym. Bull. 2018, 75(3), 891−907  doi: 10.1007/s00289-017-2071-6

    4. [4]

      Semsarzadeh, M. A.; Sabzevari, A. Highly effective organometallic-mediated radical polymerization of vinyl acetate using alumina-supported Co(acac)2 catalyst: A case study of adsorption and polymerization. J. Appl. Polym. Sci. 2018, 135(13), 46057  doi: 10.1002/app.v135.13

    5. [5]

      Bensabeh, N.; Ronda, J. C.; Galià, M.; Cádiz, V.; Lligadas, G.; Percec, V. SET-LRP of the hydrophobic biobased menthyl acrylate. Biomacromolecules 2018, 19(4), 1256−1268  doi: 10.1021/acs.biomac.8b00090

    6. [6]

      Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136(18), 6513  doi: 10.1021/ja408069v

    7. [7]

      Fu, X.; Yuan, Y.; Chen, X.; Xiao, Y.; Wang, J.;Zhou, C.; Lei, J. Use of short isobornyl methacrylate building blocks to improve the heat and oil resistance of thermoplastic elastomers via RAFT emulsion polymerization. J. Appl. Polym. Sci. 2017, 134(40), 45379  doi: 10.1002/app.v134.40

    8. [8]

      Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101(12), 3661  doi: 10.1021/cr990119u

    9. [9]

      Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101(9), 866−868

    10. [10]

      Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of raft polymerization: recent advances and new horizons. Macromolecules 2015, 48(16), 5459−5469  doi: 10.1021/acs.macromol.5b00342

    11. [11]

      Li, Q. L.; Li, L.; Wang, H. S.; Wang, R.; Wang, W.; Jiang, Y. J.; Tian, Q.; Liu, J. P. The doubly thermo-responsive triblock copolymer nanoparticles prepared through seeded RAFT polymerization. Chinese J. Polym. Sci. 2017, 35(1), 66−77  doi: 10.1007/s10118-016-1859-4

    12. [12]

      Goto A.; Sato K.; Tsujii, Y.; Fukuda, T.; Moad G.; Rizzardo, E.; Thang, S. H. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 2001, 34(3), 402−408  doi: 10.1021/ma0009451

    13. [13]

      Poller, L.; Thomson, J. M. Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polym. Chem. 2015, 6(30), 5437−5450  doi: 10.1039/C5PY00838G

    14. [14]

      Ranieri, K.; Delaittre, G.; Barner-kowollik, C.; Thomas, J. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping. Macromol. Rapid Commun. 2014, 35(23), 2023  doi: 10.1002/marc.v35.23

    15. [15]

      Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 1999, 32, 6977−6980  doi: 10.1021/ma9906837

    16. [16]

      Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H. Thiocarbonylthio compounds (SC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). effect of the activating group Z. Macromolecules 2003, 36(7), 2273−2283  doi: 10.1021/ma020883+

    17. [17]

      Moad, G.; Chiefari J, Mayadunne, R. T. A.; Moad, C. L.; Postma, A.; Rizzardo, E.; Thang, S. H. Initiating free radical polymerization. Macromol. Symp. 2002, 182, 65−80  doi: 10.1002/(ISSN)1521-3900

    18. [18]

      Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49(9), 993−1001  doi: 10.1002/(ISSN)1097-0126

    19. [19]

      Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis, T. P. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition–fragmentation equilibrium. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(9), 1353−1365  doi: 10.1002/(ISSN)1099-0518

    20. [20]

      Monteiro, M. J.; Brouwer, H. D. Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerisation. Macromolecules 2001, 34(3), 349−352  doi: 10.1021/ma001484m

    21. [21]

      Feldermann, A.; Coote, M. L.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization. J. Am. Chem. Soc. 2004, 126(48), 15915−15923  doi: 10.1021/ja046292b

    22. [22]

      Toy, A. A.; Chaffey-Millar, H.; Davis, T. P.; Stenzel, M. H.; Izgorodina, E. I.; Coote, M. L.; Barner-Kowollik, C. Thioketone spin traps as mediating agents for free radical polymerization processes. Chem. Commun. 2006, 8(8), 835−837  doi: 10.1038/b515561d

    23. [23]

      Junkers, T.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Thioketone-mediated polymerization of butyl acrylate: controlling free-radical polymerization via a dormant radical species. Macromol. Rapid Commun. 2010, 28(6), 746−753  doi: 10.1002/marc.200600885

    24. [24]

      Zheng, X.; Yue, M.; Yang, P.; Li, Q.; Yang, W. Cycloketyl radical mediated living polymerization. Polym. Chem. 2012, 3(8), 1982−1986  doi: 10.1039/c2py20117h

    25. [25]

      Huang, X.; Wang, L.; Yang, W. Preparation of core-shell particles by surface-initiated cycloketyl radical mediated living polymerization. Polym. Chem. 2015, 6(37), 6664−6670  doi: 10.1039/C5PY00703H

    26. [26]

      Yao, C.; Wang, L.; Yang, W. Cycloketyl radical mediated suspension polymerization of styrene. RSC Adv. 2016, 6(74), 69743  doi: 10.1039/C6RA14396B

    27. [27]

      Wertz, S.; Leifert, D.; Studer, A. Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): synthesis of fluorenones and xanthones. Org. Lett. 2013, 15(4), 928−931  doi: 10.1021/ol4000857

    28. [28]

      Hadjipavlou, C.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D. Synthesis and antiproliferative activity of substituted benzopyranoisoindoles: a new class of cytotoxic compounds. Bioorg. Med. Chem. Lett. 2006, 16(18), 4822−4825  doi: 10.1016/j.bmcl.2006.06.074

    29. [29]

      Lakouraj, M. M.; Mohseni, S. M. Synthesis, characterization, and biological activities of organosoluble and thermally stable xanthone-based polyamides. J. Mater. Sci. 2015, 26(3), 234−244  doi: 10.1007/s10853-012-7041-7

    30. [30]

      Nakatake, D.; Yokote, Y.; Matsushima, Y.; Yazaki, R.; Ohshima, T. A highly stable but highly reactive zinc catalyst for transesterification supported by a bis(imidazole) ligand. Green Chem. 2016, 18(6), 1524−1530  doi: 10.1039/C5GC02056E

    31. [31]

      Günzler, F.; Junkers, T.; Barner-Kowollik, C. Studying the mechanism of thioketone-mediated polymerization via electrospray ionization mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 2010, 47(7), 1864−1876  doi: 10.1002/pola.23280

    32. [32]

      Rodríguez-Sanchez, I.; Glossman-Mitnik, D.; Zaragoza-Contreras, E. A. Theoretical evaluation of the order of reactivity of transfer agents utilized in RAFT polymerization: group Z. J. Mol. Model. 2010, 16(1), 95−105  doi: 10.1007/s00894-009-0524-z

    33. [33]

      Beaudoin, E.; Bertin, D.; Gigmes, D.; Marque, S. R. A.; Siri, D.; Tordo, P. Alkoxyamine C―ON bond homolysis: stereoelectronic effects. Eur. J. Org. Chem. 2006, 7, 1755−1768  doi: 10.1002/ejoc.200500725

    34. [34]

      Zubenko, D.; Tsentalovich, Y.; Lebedeva, N.; Kirilyuk, I.; Roshchupkina, G.; Zhurko, I.; Reznikov, V.; Marque, S. R. A.; Bagryanskaya, E. Laser flash photolysis and CIDNP studies of steric effects on coupling rate constants of imidazolidine nitroxide with carbon-centered radicals, methyl isobutyrate-2-yl and tert-butyl propionate-2-yl. J. Org. Chem. 2006, 71(16), 6044−6052  doi: 10.1021/jo060787x

    35. [35]

      Marchand, J.; Autissier, L.; Guillaneuf, Y.; Couturier, J. L.; Gigmes, D.; Bertin, D. SG1 nitroxide analogues: a comparative study. Aust. J. Chem. 2010, 63, 1237−1244  doi: 10.1071/CH10123

    36. [36]

      Nicolasa, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63−235  doi: 10.1016/j.progpolymsci.2012.06.002

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    3. [3]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    4. [4]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    5. [5]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

    6. [6]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    7. [7]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    8. [8]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    9. [9]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    10. [10]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    11. [11]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    12. [12]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    13. [13]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    14. [14]

      . . University Chemistry, 2024, 39(9): 0-0.

    15. [15]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    16. [16]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    17. [17]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    18. [18]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    19. [19]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    20. [20]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

Metrics
  • PDF Downloads(0)
  • Abstract views(948)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return