Citation: Chu-Bo Sun, Hong-Da Mao, Feng Chen, Qiang Fu. Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1385-1393. doi: 10.1007/s10118-018-2150-7 shu

Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties

  • Corresponding author: Feng Chen, fengchen@scu.edu.cn Qiang Fu, qiangfu@scu.edu.cn
  • Received Date: 23 March 2018
    Revised Date: 29 April 2018
    Accepted Date: 1 May 2018
    Available Online: 11 June 2018

  • Despite the good biodegradable and mechanical properties, poly(lactic acid) still suffers from a highly inherent flammability, which restricts its applications in the electric and automobile fields. In order to improve the flame retardancy of PLA, in this work, melamine polyphosphate (MPP) and zinc bisdiethylphosphinate (ZnPi) were firstly incorporated into PLA, and the synergistic effect of them on flame retardance of PLA was investigated using limiting oxygen index (LOI), UL-94 vertical measurement, scanning electron microscopy (SEM) and cone calorimeter tests etc. The results showed that PLA composite with 15 wt% of MPP/ZnPi (3:2) had the best flame-retardant efficiency with LOI value of 30.1 and V0 rating in UL-94 tests, which was far better than using MPP or ZnPi alone. What is more, although a wide range of flame retardants have been developed to reduce the flammability, so far, they normally compromise the mechanical properties of PLA. On the premise of maintaining good flame-retardant performance, we improved the toughness of flame-retardant PLA composite, and the impact strength of flame-retardant PLA composite was more than tripled (8.08 kJ/m2) by adding thermoplastic urethanes (TPU). This work offers an innovative method for the design of the unique integration of extraordinary flame retardancy and toughening reinforcement for PLA materials.
  • 加载中
    1. [1]

      Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31(6), 576−602  doi: 10.1016/j.progpolymsci.2006.03.002

    2. [2]

      Xue, W.; Lv, C.; Jing, Y.; Chen, F.; Fu, Q. Fabrication of electrospun PVDF nanofibers with higher content of poly β phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chinese J. Polym. Sci. 2017, 35(8), 992−1000  doi: 10.1007/s10118-017-1937-2

    3. [3]

      He, Y. L.; Guo, Y. L.; He, R.; Jin, T. X.; Chen, F.; Fu, Q. Towards high molecular weight poly(bisphenol A carbonate) with excellent thermal stability and mechanical properties by solid-state polymerization. Chinese J. Polym. Sci. 2015, 33(8), 1176−1185  doi: 10.1007/s10118-015-1667-2

    4. [4]

      Mooney, B. P. The second green revolution? Production of plant-based biodegradable plastics. Biochem. J. 2009, 418(2), 219−232  doi: 10.1042/BJ20081769

    5. [5]

      Shen, L.; Worrell, E.; Patel, M. Present and future development in plastics from biomass. Biofuel. Bioprod. Biorefin. 2010, 4(1), 25−40  doi: 10.1002/bbb.v4:1

    6. [6]

      Kimura K.; Horikoshi Y. Bio-based polymers. Fujitsu. Sci. Tech. J. 2005, 41(2), 173−180

    7. [7]

      He, S.; Guo, Y. C.; Stone, T.; Davis, N.; Kim, D.; Kim, K.; Rafailovich, M. Biodegradable, flame retardant wood-plastic combination via in situ ring-opening polymerization of lactide monomers. J. Wood Sci. 2017, 63(2), 154−160  doi: 10.1007/s10086-016-1603-2

    8. [8]

      Fukushima, K.; Murariu, M.; Camino, G.; Dubois, P. Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly (lactic acid). Polym. Degrad. Stab. 2010, 95(6), 1063−1076  doi: 10.1016/j.polymdegradstab.2010.02.029

    9. [9]

      Jing, J.; Zhang, Y.; Fang, Z. P. Diphenolic acid based biphosphate on the properties of polylactic acid: synthesis, fire behavior and flame retardant mechanism. Polymer 2017, 108, 29−37  doi: 10.1016/j.polymer.2016.11.036

    10. [10]

      Jing, J.; Zhang, Y.; Tang, X. L.; Zhou, Y.; Li, X. Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: a novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 2017, 108, 361−371  doi: 10.1016/j.polymer.2016.12.008

    11. [11]

      Jiang, P.; Gu, X. Y.; Zhang, S.; Sun, J.; Xu, R.; Bourbigot, S.; Duquesne, S.; Casetta, M. Flammability and thermal degradation of poly(lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS. Polymer 2015, 79, 221−231  doi: 10.1016/j.polymer.2015.10.029

    12. [12]

      Mauldin, T. C.; Zammarano, M.; Gilman, J. W.; Shields, J. R.; Boday, D. J. Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polym. Chem. 2014, 5, 5139−5146  doi: 10.1039/C4PY00591K

    13. [13]

      Horny, N.; Kanake, Y.; Chirtoc, M.; Tighzert, L. Optimization of thermal and mechanical properties of bio-polymer based nanocomposites. Polym. Degrad. Stab. 2016, 127, 105−112  doi: 10.1016/j.polymdegradstab.2016.01.006

    14. [14]

      Zhao, X. M.; de Juan, S.; Guerrero, F. R.; Li, Z.; Llorca, J.; Wang, D. Y. Effect of N,N′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polym. Degrad. Stab. 2016, 127, 2−10  doi: 10.1016/j.polymdegradstab.2016.01.014

    15. [15]

      Lesaffre, N.; Bellayer, S.; Fontaine, G.; Jimenez, M.; Bourbigot, S. Revealing the impact of ageing on a flame retarded PLA. Polym. Degrad. Stab. 2016, 127, 88−97  doi: 10.1016/j.polymdegradstab.2015.10.019

    16. [16]

      Zhao, C. X.; Liu, Y.; Wang, D. Y.; Wang, D. L.; Wang, Y. Z. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym. Degrad. Stab. 2008, 93(7), 1323−1331  doi: 10.1016/j.polymdegradstab.2008.04.002

    17. [17]

      Stevens, G. C.; Mann, A. H. Risks and benefits in the use of flame retardants in consumer products. DTI Report. C. J. Pref, London, 1999.

    18. [18]

      Zhan, J; Song, L; Nie, S. B.; Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 2009, 94(3), 291−296  doi: 10.1016/j.polymdegradstab.2008.12.015

    19. [19]

      Stoclet, G.; Sclavons, M.; Lecouvet, B.; Devaux, J.; van Velthem, P.; Boborodea, A.; Bourbigot, S.; Sallem-Idrissi, N. Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: Structure, mechanical properties and fire performance. RSC Adv. 2014, 4, 57553−57563  doi: 10.1039/C4RA06845A

    20. [20]

      Ke, C. H.; Li, J.; Fang, K. Y.; Zhu, K. L.; Zhu, J.; Yan, Q.; Wang, Y. Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym. Degrad. Stab. 2010, 95(5), 763−770  doi: 10.1016/j.polymdegradstab.2010.02.011

    21. [21]

      Li, Y. J.; Shimizu, H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007, 7(7), 921−928  doi: 10.1002/(ISSN)1616-5195

    22. [22]

      Shibata, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate). Polymer 2006, 47(10), 3557−3564  doi: 10.1016/j.polymer.2006.03.065

    23. [23]

      Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40(17), 6257−6267  doi: 10.1021/ma070989a

    24. [24]

      Gaan, S. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism. Polym. Degrad. Stab. 2008, 93(1), 99−108  doi: 10.1016/j.polymdegradstab.2007.10.013

    25. [25]

      Duquesne, S.; Bras, M. L.; Jama, C.; Weil, E. D.; Gengembre, L. X-ray photoelectron spectroscopy investigation of fire retarded polymeric materials: application to the study of an intumescent system. Polym. Degrad. Stab. 2002, 77(2), 203−211  doi: 10.1016/S0141-3910(02)00035-6

    26. [26]

      Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta J. M.; Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mat. Sci. Eng. R 2009, 63(3), 100−125  doi: 10.1016/j.mser.2008.09.002

    27. [27]

      Bras, M. L.; Duquesne, S.; Magali, F.; Grisel, M.; Poutch, F. Intumescent polypropylene/flax blends: a preliminary study Polym. Degrad. Stab. 2005, 88(1), 80−84  doi: 10.1016/j.polymdegradstab.2004.04.028

    28. [28]

      Gaan, S.; Sun, G.; Hutches, K.; Engelhard, M. H. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism. Polym. Degrad. Stab. 2008, 93(1), 99−108  doi: 10.1016/j.polymdegradstab.2007.10.013

    29. [29]

      Nie, S. B.; Hu Y.; Song L.; He, Q. L.; Yang, D. D.; Chen, H. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym. Adv. Technol. 2008, 19(8), 1077−1083  doi: 10.1002/pat.v19:8

    30. [30]

      Yu, W. J.; Xu, S. M.; Zhang, L.; Fu, Q. Morphology and mechanical properties of immiscible polyethylene/polyamide12 blends prepared by high shear processing. Chinese J. Polym. Sci. 2017, 35(9), 1132−1142  doi: 10.1007/s10118-017-1954-1

  • 加载中
    1. [1]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    2. [2]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    3. [3]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    4. [4]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    5. [5]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    6. [6]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    7. [7]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    8. [8]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    11. [11]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    12. [12]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    13. [13]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    17. [17]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    18. [18]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    19. [19]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    20. [20]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

Metrics
  • PDF Downloads(0)
  • Abstract views(965)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return