The Physical Chemistry for the Self-assembly of Peptide Hydrogels
- Corresponding author: Yi Cao, caoyi@nju.edu.cn
Citation:
Ying Li, Yi Cao. The Physical Chemistry for the Self-assembly of Peptide Hydrogels[J]. Chinese Journal of Polymer Science,
;2018, 36(3): 366-378.
doi:
10.1007/s10118-018-2099-6
Lehn J. M.. Perspectives in supramolecular chemistry-from molecular recognition towards molecular informationprocessing and self-organization[J]. Angew. Chem. Int. Ed., 1990,29(11):1304-1319. doi: 10.1002/(ISSN)1521-3773
Whitesides G. M., Mathias J. P., Seto C. T.. Molecular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures[J]. Science, 1991,254(5036):1312-1319.
Ulijn R. V., Smith A. M.. Designing peptide based nanomaterials[J]. Chem. Soc. Rev., 2008,37(4):664-675. doi: 10.1039/b609047h
Zhao F., Ma M. L., Xu B.. Molecular hydrogels of therapeutic agents[J]. Chem. Soc. Rev., 2009,38(4):883-891. doi: 10.1039/b806410p
Cui H., Webber M. J., Stupp S. I.. Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials[J]. Biopolymers, 2010,94(1):1-18. doi: 10.1002/bip.21328
Gao Y., Yang Z., Kuang Y., Ma M. L., Li J., Zhao F., Xu B.. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels[J]. Biopolymers, 2010,94(1):19-31. doi: 10.1002/bip.21321
Gao Y., Zhao F., Wang Q., Zhang Y., Xu B.. Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes[J]. Chem. Soc. Rev., 2010,39(9):3425-3433. doi: 10.1039/b919450a
Woolfson D. N.. Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides[J]. Biopolymers, 2010,94(1):118-127. doi: 10.1002/bip.21345
Yan C., Pochan D. J.. Rheological properties of peptide-based hydrogels for biomedical and other applications[J]. Chem. Soc. Rev., 2010,39(9):3528-3540.
Aida T., Meijer E. W., Stupp S. I.. Functional supramolecular polymers[J]. Science, 2012,335(6070):813-817. doi: 10.1126/science.1205962
Matson J. B., Stupp S. I.. Self-assembling peptide scaffolds for regenerative medicine[J]. Chem. Commun., 2012,48(1):26-33.
Boekhoven J., Stupp S. I.. 25th anniversary article:supramolecular materials for regenerative medicine[J]. Adv. Mater., 2014,26(11):1642-1659. doi: 10.1002/adma.201304606
Fichman G., Gazit E.. Self-assembly of short peptides to form hydrogels:design of building blocks, physical properties and technological applications[J]. Acta Biomater., 2014,10(4):1671-1682. doi: 10.1016/j.actbio.2013.08.013
Fleming S., Ulijn R. V.. Design of nanostructures based on aromatic peptide amphiphiles[J]. Chem. Soc. Rev., 2014,43(23):8150-8177. doi: 10.1039/C4CS00247D
Ng V. W., Chan J. M., Sardon H., Ono R. J., Garcia J. M., Yang Y. Y., Hedrick J. L.. Antimicrobial hydrogels:a new weapon in the arsenal against multidrug-resistant infections[J]. Adv. Drug. Deliver. Rev., 2014,78:46-62. doi: 10.1016/j.addr.2014.10.028
Ramakers B. E., van Hest J. C., Lowik D. W.. Molecular tools for the construction of peptide-based materials[J]. Chem. Soc. Rev., 2014,43(8):2743-2756. doi: 10.1039/c3cs60362h
Ren C., Zhang J., Chen M., Yang Z.. Self-assembling small molecules for the detection of important analytes[J]. Chem. Soc. Rev., 2014,43(21):7257-7266. doi: 10.1039/C4CS00161C
Du X., Zhou J., Shi J., Xu B.. Supramolecular hydrogelators and hydrogels:from soft matter to molecular biomaterials[J]. Chem. Rev., 2015,115(24):13165-13307.
Loo Y., Hauser C. A.. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications[J]. Biomed. Mater., 2015,11(1). doi: 10.1088/1748-6041/11/1/014103
Rubert Perez C. M., Stephanopoulos N., Sur S., Lee S. S., Newcomb C., Stupp S. I.. The powerful functions of peptide-based bioactive matrices for regenerative medicine[J]. Ann. Biomed. Eng., 2015,43(3):501-514.
de Leon Rodriguez L. M., Hemar Y., Cornish J., Brimble M. A.. Structure-mechanical property correlations of hydrogel forming beta-sheet peptides[J]. Chem. Soc. Rev., 2016,45(17):4797-4824. doi: 10.1039/C5CS00941C
Koutsopoulos S.. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine:progress, design guidelines, and applications[J]. J. Biomed. Mater. Res. A, 2016,104(4):1002-1016.
Tao K., Levin A., Adler-Abramovich L., Gazit E.. Fmoc-modified amino acids and short peptides:simple bio-inspired building blocks for the fabrication of functional materials[J]. Chem. Soc. Rev., 2016,45(14):3935-3953. doi: 10.1039/C5CS00889A
Dou X. Q., Feng C. L.. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture[J]. Adv. Mater., 2017,29(16). doi: 10.1002/adma.201604062
Eskandari S., Guerin T., Toth I., Stephenson R. J.. Recent advances in self-assembled peptides:Implications for targeted drug delivery and vaccine engineering[J]. Adv. Drug. Deliver. Rev., 2017:110-187.
Singh N., Kumar M., Miravet J. F., Ulijn R. V., Escuder B.. Peptide-based molecular hydrogels as supramolecular protein mimics[J]. Chemistry, 2017,23(5):981-993. doi: 10.1002/chem.201602624
Song Z., Chen X., You X., Huang K., Dhinakar A., Gu Z., Wu J.. Self-assembly of peptide amphiphiles for drug delivery:the role of peptide primary and secondary structures[J]. Biomater. Sci., 2017,5(12):2369-2380. doi: 10.1039/C7BM00730B
Worthington P., Langhans S., Pochan D.. beta-hairpin peptide hydrogels for package delivery[J]. Adv. Drug. Deliv. Rev., 2017:110-136.
Zhou J., Li J., Du X., Xu B.. Supramolecular biofunctional materials[J]. Biomaterials, 2017,129:1-27. doi: 10.1016/j.biomaterials.2017.03.014
Zhao X., Pan F., Xu H., Yaseen M., Shan H., Hauser C. A., Zhang S., Lu J. R.. Molecular self-assembly and applications of designer peptide amphiphiles[J]. Chem. Soc. Rev., 2010,39(9):3480-3498. doi: 10.1039/b915923c
Luo Z., Zhang S.. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society[J]. Chem. Soc. Rev., 2012,41(13):4736-4754.
Bowerman C. J., Nilsson B. L.. Self-assembly of amphipathic beta-sheet peptides:insights and applications[J]. Biopolymers, 2012,98(3):169-184. doi: 10.1002/bip.22058
Draper E. R., Adams D. J.. Low-molecular-weight gels:the state of the art[J]. Chem, 2017,3(3):390-410.
van Esch J. H.. We can design molecular gelators, but do we understand them?[J]. Langmuir, 2009,25(15):8392-8394. doi: 10.1021/la901720a
Onuchic J. N., Luthey-Schulten Z., Wolynes P. G.. Theory of protein folding:the energy landscape perspective[J]. Annu. Rev. Phys. Chem., 1997,48:545-600.
Li Y., Qin M., Cao Y., Wang W.. Designing the mechanical properties of peptide-based supramolecular hydrogels for biomedical applications[J]. Sci. China Phys. Mech., 2014,57(5):849-858. doi: 10.1007/s11433-014-5427-z
Raeburn J., Zamith Cardoso A., Adams D. J.. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels[J]. Chem. Soc. Rev., 2013,42(12):5143-5156. doi: 10.1039/c3cs60030k
Mattia E., Otto S.. Supramolecular systems chemistry[J]. Nat. Nanotechnol., 2015,10(2):111-119. doi: 10.1038/nnano.2014.337
Cai S. Q., Suo Z. G.. Equations of state for ideal elastomeric gels[J]. EPL, 2012,97(3). doi: 10.1209/0295-5075/97/34009
Illeperuma W. R. K., Sun J. Y., Suo Z. G., Vlassak J. J.. Force and stroke of a hydrogel actuator[J]. Soft Matter, 2013,9(35):8504-8511. doi: 10.1039/c3sm51617b
Hartgerink J. D., Beniash E., Stupp S. I.. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science, 2001,294(5547):1684-1688. doi: 10.1126/science.1063187
van Bommel K. J., van der Pol C., Muizebelt I., Friggeri A., Heeres A., Meetsma A., Feringa B. L., van Esch J.. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture[J]. Angew. Chem. Int. Ed., 2004,43(13):1663-1667. doi: 10.1002/(ISSN)1521-3773
Yokoi H., Kinoshita T., Zhang S.. Dynamic reassembly of peptide RADA16 nanofiber scaffold[J]. Proc. Natl. Acad. Sci. USA, 2005,102(24):8414-8419. doi: 10.1073/pnas.0407843102
Schneider J. P., Pochan D. J., Ozbas B., Rajagopal K., Pakstis L., Kretsinger J.. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide[J]. J. Am. Chem. Soc., 2002,124(50):15030-15037.
Smith A. M., Williams R. J., Tang C., Coppo P., Collins R. F., Turner M. L., Saiani A., Ulijn R. V.. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets[J]. Adv. Mater., 2008,20(1):37-41. doi: 10.1002/(ISSN)1521-4095
Mahler A., Reches M., Rechter M., Cohen S., Gazit E.. Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide[J]. Adv. Mater., 2006,18(11):1365-1370. doi: 10.1002/(ISSN)1521-4095
Ma M., Kuang Y., Gao Y., Zhang Y., Gao P., Xu B.. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels[J]. J. Am. Chem. Soc., 2010,132(8):2719-2728. doi: 10.1021/ja9088764
Dougherty D. A.. The cation-pi interaction[J]. Acc. Chem. Res., 2013,46(4):885-893. doi: 10.1021/ar300265y
Chandler D.. Interfaces and the driving force of hydrophobic assembly[J]. Nature, 2005,437(7059):640-647. doi: 10.1038/nature04162
Tsonchev S., Niece K. L., Schatz G. C., Ratner M. A., Stupp S. I.. Phase diagram for assembly of biologically-active peptide amphiphiles[J]. J. Phys. Chem. B, 2008,112(2):441-447. doi: 10.1021/jp076273z
Rehm T. H., Schmuck C.. Ion-pair induced self-assembly in aqueous solvents[J]. Chem. Soc. Rev., 2010,39(10):3597-3611. doi: 10.1039/b926223g
Legon A. C., Millen D. J.. Angular geometries and other properties of hydrogen-bonded dimers-a simple electrostatic interpretation of the success of the electron-pair model[J]. Chem. Soc. Rev., 1987,16(4):467-498.
Knowles T. P., Fitzpatrick A. W., Meehan S., Mott H. R., Vendruscolo M., Dobson C. M., Welland M. E.. Role of intermolecular forces in defining material properties of protein nanofibrils[J]. Science, 2007,318(5858):1900-1903. doi: 10.1126/science.1150057
Hunter C. A., Sanders J. K. M.. The nature of pi-pi interactions[J]. J. Am. Chem. Soc., 1990,112(14):5525-5534. doi: 10.1021/ja00170a016
Ma C. D., Wang C., Acevedo-Velez C., Gellman S. H., Abbott N. L.. Modulation of hydrophobic interactions by proximally immobilized ions[J]. Nature, 2015,517(7534):347-350.
Yan X., Zhu P., Li J.. Self-assembly and application of diphenylalanine-based nanostructures[J]. Chem. Soc. Rev., 2010,39(6):1877-1890. doi: 10.1039/b915765b
Bell G. I.. Models for specific adhesion of cells to cells[J]. Science, 1978,200(4342):618-627. doi: 10.1126/science.347575
Jaremko M., Jaremko L., Kim H. Y., Cho M. K., Schwieters C. D., Giller K., Becker S., Zweckstetter M.. Cold denaturation of a protein dimer monitored at atomic resolution[J]. Nat. Chem. Biol., 2013,9(4):264-270. doi: 10.1038/nchembio.1181
Mason J. M., Arndt K. M.. Coiled coil domains:stability, specificity, and biological implications[J]. ChemBioChem, 2004,5(2):170-176.
Pandya M. J., Spooner G. M., Sunde M., Thorpe J. R., Rodger A., Woolfson D. N.. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis[J]. Biochemistry, 2000,39(30):8728-8734. doi: 10.1021/bi000246g
Banwell E. F., Abelardo E. S., Adams D. J., Birchall M. A., Corrigan A., Donald A. M., Kirkland M., Serpell L. C., Butler M. F., Woolfson D. N.. Rational design and application of responsive alpha-helical peptide hydrogels[J]. Nat. Mater., 2009,8(7):596-600. doi: 10.1038/nmat2479
Vepari C., Kaplan D. L.. Silk as a Biomaterial[J]. Prog. Polym. Sci., 2007,32(8-9):991-1007.
Asakura T., Ohata T., Kametani S., Okushita K., Yazawa K., Nishiyama Y., Nishimura K., Aoki A., Suzuki F., Kaji H., Ulrich A. S., Williamson M. P.. Intermolecular packing in B. mori Silk fibroin:multinuclear NMR Study of the model peptide (Ala-Gly)(15) Defines a heterogeneous antiparallel antipolar mode of assembly in the silk ò form[J]. Macromolecules, 2015,48(1):28-36. doi: 10.1021/ma502191g
Altman G. H., Diaz F., Jakuba C., Calabro T., Horan R. L., Chen J. S., Lu H., Richmond J., Kaplan D. L.. Silk-based biomaterials[J]. Biomaterials., 2003,24(3):401-416. doi: 10.1016/S0142-9612(02)00353-8
Zhang S., Holmes T., Lockshin C., Rich A.. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane[J]. Proc. Natl. Acad. Sci. USA., 1993,90(8):3334-3338. doi: 10.1073/pnas.90.8.3334
Collier J. H., Hu B. H., Ruberti J. W., Zhang J., Shum P., Thompson D. H., Messersmith P. B.. Thermally and photochemically triggered self-assembly of peptide hydrogels[J]. J. Am. Chem. Soc., 2001,123(38):9463-9464. doi: 10.1021/ja011535a
Bowerman C. J., Liyanage W., Federation A. J., Nilsson B. L.. Tuning beta-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity[J]. Biomacromolecules, 2011,12(7):2735-2745.
Lee N. R., Bowerman C. J., Nilsson B. L.. Effects of varied sequence pattern on the self-assembly of amphipathic peptides[J]. Biomacromolecules., 2013,14(9):3267-3277. doi: 10.1021/bm400876s
Dong H., Paramonov S. E., Aulisa L., Bakota E. L., Hartgerink J. D.. Self-assembly of multidomain peptides:balancing molecular frustration controls conformation and nanostructure[J]. J. Am. Chem. Soc., 2007,129(41):12468-12472. doi: 10.1021/ja072536r
Yang Z. M., Xu K. M., Guo Z. F., Guo Z. H., Xu B.. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death[J]. Adv. Mater., 2007,19(20):3152-3156. doi: 10.1002/adma.200701971
Yang Z. M., Ho P. L., Liang G. L., Chow K. H., Wang Q. G., Cao Y., Guo Z. H., Xu B.. Using beta-lactamase to trigger supramolecular hydrogelation[J]. J. Am. Chem. Soc., 2007,129(2):266-267. doi: 10.1021/ja0675604
Zhang Y., Kuang Y., Gao Y., Xu B.. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels[J]. Langmuir, 2011,27(2):529-537. doi: 10.1021/la1020324
Wang H. M., Yang C. H., Tan M., Wang L., Kong D. L., Yang Z. M.. A structure-gelation ability study in a short peptide-based nSuper Hydrogelatoro system[J]. Soft Matter, 2011,7(8):3897-3905. doi: 10.1039/c0sm01405b
Liang C. H., Zheng D. B., Shi F., Xu T. Y., Yang C. H., Liu J. F., Wang L., Yang Z. M.. Enzyme-assisted peptide folding, assembly and anti-cancer properties[J]. Nanoscale, 2017,9(33):11987-11993. doi: 10.1039/C7NR04370H
Wang Z. Y., Liang C. H., Shi F., He T., Gong C. Y., Wang L., Yang Z. M.. Cancer vaccines using supramolecular hydrogels of NSAID-modified peptides as adjuvants abolish tumorigenesis[J]. Nanoscale, 2017,9(37):14058-14064. doi: 10.1039/C7NR04990K
Zhan J., Cai Y. B., Ji S. L., He S. S., Cao Y., Ding D., Wang L., Yang Z. M.. Spatiotemporal control of supramolecular self-assembly and function[J]. ACS Appl. Mater. Interfaces, 2017,9(11):10012-10018.
Cai Y. B., Shen H. S., Zhan J., Lin M. L., Dai L. H., Ren C. H., Shi Y., Liu J. F., Gao J., Yang Z. M.. Supramolecular "Trojan Horse" for nuclear delivery of dual anticancer drugs[J]. J. Am. Chem. Soc., 2017,139(8):2876-2879. doi: 10.1021/jacs.6b12322
Wang H. M., Luo Z., Wang Y. C. Z., He T., Yang C. B., Ren C. H., Ma L. S., Gong C. Y., Li X. Y., Yang Z. M.. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants[J]. Adv. Funct. Mater., 2016,26(11):1822-1829.
Zhang X. L., Dong C. M., Huang W. Y., Wang H. M., Wang L., Ding D., Zhou H., Long J. F., Wang T. L., Yang Z. M.. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation[J]. Nanoscale, 2015,7(40):16666-16670. doi: 10.1039/C5NR05213K
Zhang J. W., Ou C. W., Shi Y., Wang L., Chen M. S., Yang Z. M.. Visualized detection of melamine in milk by supramolecular hydrogelations[J]. Chem. Commun., 2014,50(85):12873-12876. doi: 10.1039/C4CC05826G
Hai Z. J., Li J. D., Wu J. J., Xu J. C., Liang G. L.. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence[J]. J. Am. Chem. Soc., 2017,139(3):1041-1044. doi: 10.1021/jacs.6b11041
Wu C. F., Zheng Z., Guo Y. N., Tian C. L., Xue Q., Liang G. L.. Fluorine substitution enhances the self-assembling ability of hydrogelators[J]. Nanoscale, 2017,9(32):11429-11433.
Zheng Z., Chen P. Y., Xie M. L., Wu C. F., Luo Y. F., Wang W. T., Jiang J., Liang G. L.. Cell environment-differentiated self-assembly of nanofibers[J]. J. Am. Chem. Soc., 2016,138(35):11128-11131. doi: 10.1021/jacs.6b06903
Ding Y., Li Y., Qin M., Cao Y., Wang W.. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability[J]. Langmuir, 2013,29(43):13299-13306. doi: 10.1021/la4029639
Xue B., Qin M., Wang T. K., Wu J. H., Luo D. J., Jiang Q., Li Y., Cao Y., Wang W.. Electrically controllable actuators based on supramolecular peptide hydrogels[J]. Adv. Funct. Mater., 2016,26(48):9053-9062. doi: 10.1002/adfm.v26.48
Li Y., Wang L.. Removing organic dyes by using a small peptide hydrogel[J]. Chem. Lett., 2016,45(11):1253-1255. doi: 10.1246/cl.160597
Cheng W., Li Y.. Peptide hydrogelation triggered by enzymatic induced pH switch[J]. Sci. China Phys. Mech., 2016,59(7):678-711.
Newcomb C. J., Bitton R., Velichko Y. S., Snead M. L., Stupp S. I.. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization[J]. Small, 2012,8(14):2195-2202.
Pashuck E. T., Cui H. G., Stupp S. I.. Tuning supramolecular rigidity of peptide fibers through molecular structure[J]. J. Am. Chem. Soc., 2010,132(17):6041-6046. doi: 10.1021/ja908560n
da Silva R. M., van der Zwaag D., Albertazzi L., Lee S. S., Meijer E. W., Stupp S. I.. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres[J]. Nat. Commun., 2016,7. doi: 10.1038/ncomms11561
Ortony J. H., Qiao B., Newcomb C. J., Keller T. J., Palmer L. C., Deiss-Yehiely E., Olvera de la Cruz M., Han S., Stupp S. I.. Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure[J]. J. Am. Chem. Soc., 2017,139(26):8915-8921. doi: 10.1021/jacs.7b02969
Pochan D. J., Schneider J. P., Kretsinger J., Ozbas B., Rajagopal K., Haines L.. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide[J]. J. Am. Chem. Soc., 2003,125(39):11802-11803. doi: 10.1021/ja0353154
Lamm M. S., Rajagopal K., Schneider J. P., Pochan D. J.. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly[J]. J. Am. Chem. Soc., 2005,127(47):16692-16700.
Salick D. A., Pochan D. J., Schneider J. P.. Design of an injectable beta-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus[J]. Adv. Mater., 2009,21(41):4120-4123.
Rughani R. V., Salick D. A., Lamm M. S., Yucel T., Pochan D. J., Schneider J.P.. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel[J]. Biomacromolecules, 2009,10(5):1295-1304. doi: 10.1021/bm900113z
Rajagopal K., Lamm M. S., Haines-Butterick L. A., Pochan D. J., Schneider J. P.. Tuning the pH Responsiveness of beta-Hairpin peptide folding, self-assembly, and hydrogel material formation[J]. Biomacromolecules, 2009,10(9):2619-2625. doi: 10.1021/bm900544e
Ding B. Y., Li Y., Qin M., Ding Y., Cao Y., Wang W.. Two approaches for the engineering of homogeneous small-molecule hydrogels[J]. Soft Matter, 2013,9(18):4672-4680. doi: 10.1039/c3sm50324k
Wang J., Liu K., Xing R., Yan X.. Peptide self-assembly:thermodynamics and kinetics[J]. Chem. Soc. Rev., 2016,45(20):5589-5604. doi: 10.1039/C6CS00176A
Sasselli I. R., Halling P. J., Ulijn R. V., Tuttle T.. Supramolecular fibers in gels can be at thermodynamic equilibrium:a simple packing model reveals preferential fibril formation versus crystallization[J]. ACS Nano, 2016,10(2):2661-2668. doi: 10.1021/acsnano.5b07690
Adams D. J., Morris K., Chen L., Serpell L. C., Bacsa J., Day G. M.. The delicate balance between gelation and crystallisation:structural and computational investigations[J]. Soft Matter, 2010,6(17):4144-4156. doi: 10.1039/c0sm00409j
Lan Y., Corradini M. G., Weiss R. G., Raghavan S. R., Rogers M. A.. To gel or not to gel:correlating molecular gelation with solvent parameters[J]. Chem. Soc. Rev., 2015,44(17):6035-6058. doi: 10.1039/C5CS00136F
Raynal M., Bouteiller L.. Organogel formation rationalized by Hansen solubility parameters[J]. Chem. Commun., 2011,47(29):8271-8273. doi: 10.1039/c1cc13244j
Lloyd G. O., Steed J. W.. Anion-tuning of supramolecular gel properties[J]. Nat. Chem., 2009,1(6):437-442. doi: 10.1038/nchem.283
Massi F., Straub J. E.. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation[J]. Proteins, 2001,42(2):217-229.
Straub J. E., Thirumalai D.. Toward a molecular theory of early and late events in monomer to amyloid fibril formation[J]. Annu. Rev. Phys. Chem., 2011,62:437-463. doi: 10.1146/annurev-physchem-032210-103526
Lansbury P. T.. A reductionist view of Alzheimer's disease[J]. Acc. Chem. Res., 1996,29(7):317-321. doi: 10.1021/ar950159u
Hall D., Hirota N., Dobson C. M.. A toy model for predicting the rate of amyloid formation from unfolded protein[J]. J. Mol. Biol., 2005,351(1):195-205. doi: 10.1016/j.jmb.2005.05.013
Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B.. On the nucleation and growth of amyloid beta-protein fibrils:detection of nuclei and quantitation of rate constants[J]. Proc. Natl. Acad. Sci. USA, 1996,93(3):1125-1129. doi: 10.1073/pnas.93.3.1125
Lomakin A., Teplow D. B., Kirschner D. A., Benedek G. B.. Kinetic theory of fibrillogenesis of amyloid beta-protein[J]. Proc. Natl. Acad. Sci. USA., 1997,94(15):7942-7947. doi: 10.1073/pnas.94.15.7942
Gibson T. J., Murphy R. M.. Design of peptidyl compounds that affect beta-amyloid aggregation:importance of surface tension and context[J]. Biochemistry, 2005,44(24):8898-8907. doi: 10.1021/bi050225s
Knowles T. P., Waudby C. A., Devlin G. L., Cohen S. I., Aguzzi A., Vendruscolo M., Terentjev E. M., Welland M. E., Dobson C. M.. An analytical solution to the kinetics of breakable filament assembly[J]. Science, 2009,326(5959):1533-1537. doi: 10.1126/science.1178250
Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T.. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy[J]. Chem. Biol., 1997,4(2):119-125. doi: 10.1016/S1074-5521(97)90255-6
Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., Teplow D. B.. Amyloid beta-protein fibrillogenesis[J]. Detection of a protofibrillar intermediate. J. Biol. Chem., 1997,272(35):22364-22372.
Arosio P., Knowles T. P. J., Linse S.. On the lag phase in amyloid fibril formation[J]. Phys. Chem. Chem. Phys., 2015,17(12):7606-7618. doi: 10.1039/C4CP05563B
Fletcher N. L., Lockett C. V., Dexter A. F.. A pH-responsive coiled-coil peptide hydrogel[J]. Soft Matter, 2011,7(21):10210-10218.
Massi F., Straub J. E.. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation[J]. Proteins, 2001,42(2):217-229. doi: 10.1002/(ISSN)1097-0134
Ahmed S., Pramanik B., Sankar K. N. A., Srivastava A., Singha N., Dowari P., Srivastava A., Mohanta K., Debnath A., Das D.. Solvent assisted tuning of morphology of a peptide-perylenediimide conjugate: helical fibers to nano-rings and their differential semiconductivity[J]. Sci. Rep., 2017,7(1). doi: 10.1038/s41598-017-09730-z
Tian Y., Zhang H. V., Kiick K. L., Saven J. G., Pochan D. J.. Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide[J]. Org. Biomol. Chem., 2017,15(29):6109-6118. doi: 10.1039/C7OB01197K
Wang Y., Huang R., Qi W., Wu Z., Su R., He Z.. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers[J]. Nanotechnology, 2013. doi: 10.1088/0957-4484/24/46/465603
Heuser T., Weyandt E., Walther A.. Biocatalytic feedback-driven temporal programming of self-regulating peptide hydrogels[J]. Angew. Chem. Int. Ed., 2015,54(45):13258-13262. doi: 10.1002/anie.201505013
Conte M. P., Singh N., Sasselli I. R., Escuder B., Ulijn R. V.. Metastable hydrogels from aromatic dipeptides[J]. Chem. Commun., 2016,52(96):13889-13892.
Debnath S., Roy S., Ulijn R. V.. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly[J]. J. Am. Chem. Soc., 2013,135(45):16789-16792. doi: 10.1021/ja4086353
Williams R. J., Smith A. M., Collins R., Hodson N., Das A. K., Ulijn R. V.. Enzyme-assisted self-assembly under thermodynamic control[J]. Nat. Nanotechnol., 2009,4(1):19-24. doi: 10.1038/nnano.2008.378
Adams D. J., Butler M. F., Frith W. J., Kirkland M., Mullen L., Sanderson P.. A new method for maintaining homogeneity during liquid-hydrogel transitions using low molecular weight hydrogelators[J]. Soft Matter, 2009,5(9):1856-1862. doi: 10.1039/b901556f
Ferreiro D. U., Komives E. A., Wolynes P. G.. Frustration in biomolecules[J]. Q. Rev. Biophys., 2014,47(4):285-363. doi: 10.1017/S0033583514000092
Wolynes P.G.. Evolution, energy landscapes and the paradoxes of protein folding[J]. Biochimie., 2015,119:218-230. doi: 10.1016/j.biochi.2014.12.007
Levy Y., Onuchic J. N.. Mechanisms of protein assembly: lessons from minimalist models[J]. Acc. Chem. Res., 2006,39(2):135-142. doi: 10.1021/ar040204a
Friedel M., Shea J. E.. Self-assembly of peptides into a beta-barrel motif[J]. J. Chem. Phys., 2004,120(12):5809-5823. doi: 10.1063/1.1649934
Schmidt M., Rohou A., Lasker K., Yadav J. K., Schiene-Fischer C., Fandrich M., Grigorieff N.. Peptide dimer structure in an Abeta(1-42) fibril visualized with cryo-EM[J]. Proc. Natl. Acad. Sci. USA, 2015,112(38):11858-11863. doi: 10.1073/pnas.1503455112
Pinotsi D., Kaminski Schierle G. S., Kaminski C. F.. Optical Super-resolution imaging of beta-amyloid aggregation in vitro and in vivo: method and techniques[J]. Method. Mol. Biol., 2016,1303:125-141.
Milhiet P. E., Yamamoto D., Berthoumieu O., Dosset P., Le Grimellec C., Verdier J. M., Marchal S., Ando T.. Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy[J]. PLoS One., 2010,5(10). doi: 10.1371/journal.pone.0013240
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Mengchen Liu , Yufei Zhang , Yi Xiao , Yang Wei , Meichen Bi , Huaide Jiang , Yan Yu , Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Xi Chen , Xue Zhang , Shuai Yang , Jie Wang , Tian Tang , Maling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
Xiaoyu Hou , Mingyang Liu , Hu Wu , Nan Wang , Xu Zhao , Xifeng Qin , Xiaomin Su , Hanwei Huang , Zihan Ma , Jiahao Liu , Onder Ergonul , Füsun Can , Wei Liu , Zhiqing Pang , Funan Liu . Differential releasing hydrogel loaded with oncolytic viruses and anti-CAFs drug to enhance oncology therapeutic efficacy. Chinese Chemical Letters, 2025, 36(5): 110106-. doi: 10.1016/j.cclet.2024.110106
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Jian Li , Jinjin Chen , Qi-Long Hu , Zhen Wang , Xiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Yang Xu , Le Ma , Yang Wang , Chunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279