Citation: Ying Li, Yi Cao. The Physical Chemistry for the Self-assembly of Peptide Hydrogels[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 366-378. doi: 10.1007/s10118-018-2099-6 shu

The Physical Chemistry for the Self-assembly of Peptide Hydrogels

  • Corresponding author: Yi Cao, caoyi@nju.edu.cn
  • Received Date: 3 November 2017
    Accepted Date: 3 December 2017
    Available Online: 28 December 2017

  • Peptide hydrogels have been widely used for diverse biomedical applications. However, our current understanding of the physical principles underlying the self-assembly process is still limited. In this review, we summarize our current understanding on the physical chemistry principles from the basic interactions that drive the self-assembly process to the energy landscapes that dictate the thermodynamics and kinetics of the process. We discuss the effect of different factors that affect the kinetics of the self-assembly of peptide fibrils and how this is related to the macroscopic gelation process. We provide our understanding on the molecular origin of the complex and rugged energy landscape for the self-assembly of peptide hydrogels. The hierarchical self-assembled structures and the diverse self-assembling mechanism make it difficult and challenging to rationally design the physical and chemical properties of peptide hydrogels at the molecular level. We also give our personal perspective to the potential future directions in this field.
  • 加载中
    1. [1]

      Lehn J. M.. Perspectives in supramolecular chemistry-from molecular recognition towards molecular informationprocessing and self-organization[J]. Angew. Chem. Int. Ed., 1990,29(11):1304-1319. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Whitesides G. M., Mathias J. P., Seto C. T.. Molecular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures[J]. Science, 1991,254(5036):1312-1319.  

    3. [3]

      Ulijn R. V., Smith A. M.. Designing peptide based nanomaterials[J]. Chem. Soc. Rev., 2008,37(4):664-675. doi: 10.1039/b609047h

    4. [4]

      Zhao F., Ma M. L., Xu B.. Molecular hydrogels of therapeutic agents[J]. Chem. Soc. Rev., 2009,38(4):883-891. doi: 10.1039/b806410p

    5. [5]

      Cui H., Webber M. J., Stupp S. I.. Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials[J]. Biopolymers, 2010,94(1):1-18. doi: 10.1002/bip.21328

    6. [6]

      Gao Y., Yang Z., Kuang Y., Ma M. L., Li J., Zhao F., Xu B.. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels[J]. Biopolymers, 2010,94(1):19-31. doi: 10.1002/bip.21321

    7. [7]

      Gao Y., Zhao F., Wang Q., Zhang Y., Xu B.. Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes[J]. Chem. Soc. Rev., 2010,39(9):3425-3433. doi: 10.1039/b919450a

    8. [8]

      Woolfson D. N.. Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides[J]. Biopolymers, 2010,94(1):118-127. doi: 10.1002/bip.21345

    9. [9]

      Yan C., Pochan D. J.. Rheological properties of peptide-based hydrogels for biomedical and other applications[J]. Chem. Soc. Rev., 2010,39(9):3528-3540.  

    10. [10]

      Aida T., Meijer E. W., Stupp S. I.. Functional supramolecular polymers[J]. Science, 2012,335(6070):813-817. doi: 10.1126/science.1205962

    11. [11]

      Matson J. B., Stupp S. I.. Self-assembling peptide scaffolds for regenerative medicine[J]. Chem. Commun., 2012,48(1):26-33.  

    12. [12]

      Boekhoven J., Stupp S. I.. 25th anniversary article:supramolecular materials for regenerative medicine[J]. Adv. Mater., 2014,26(11):1642-1659. doi: 10.1002/adma.201304606

    13. [13]

      Fichman G., Gazit E.. Self-assembly of short peptides to form hydrogels:design of building blocks, physical properties and technological applications[J]. Acta Biomater., 2014,10(4):1671-1682. doi: 10.1016/j.actbio.2013.08.013

    14. [14]

      Fleming S., Ulijn R. V.. Design of nanostructures based on aromatic peptide amphiphiles[J]. Chem. Soc. Rev., 2014,43(23):8150-8177. doi: 10.1039/C4CS00247D

    15. [15]

      Ng V. W., Chan J. M., Sardon H., Ono R. J., Garcia J. M., Yang Y. Y., Hedrick J. L.. Antimicrobial hydrogels:a new weapon in the arsenal against multidrug-resistant infections[J]. Adv. Drug. Deliver. Rev., 2014,78:46-62. doi: 10.1016/j.addr.2014.10.028

    16. [16]

      Ramakers B. E., van Hest J. C., Lowik D. W.. Molecular tools for the construction of peptide-based materials[J]. Chem. Soc. Rev., 2014,43(8):2743-2756. doi: 10.1039/c3cs60362h

    17. [17]

      Ren C., Zhang J., Chen M., Yang Z.. Self-assembling small molecules for the detection of important analytes[J]. Chem. Soc. Rev., 2014,43(21):7257-7266. doi: 10.1039/C4CS00161C

    18. [18]

      Du X., Zhou J., Shi J., Xu B.. Supramolecular hydrogelators and hydrogels:from soft matter to molecular biomaterials[J]. Chem. Rev., 2015,115(24):13165-13307.  

    19. [19]

      Loo Y., Hauser C. A.. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications[J]. Biomed. Mater., 2015,11(1). doi: 10.1088/1748-6041/11/1/014103

    20. [20]

      Rubert Perez C. M., Stephanopoulos N., Sur S., Lee S. S., Newcomb C., Stupp S. I.. The powerful functions of peptide-based bioactive matrices for regenerative medicine[J]. Ann. Biomed. Eng., 2015,43(3):501-514.  

    21. [21]

      de Leon Rodriguez L. M., Hemar Y., Cornish J., Brimble M. A.. Structure-mechanical property correlations of hydrogel forming beta-sheet peptides[J]. Chem. Soc. Rev., 2016,45(17):4797-4824. doi: 10.1039/C5CS00941C

    22. [22]

      Koutsopoulos S.. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine:progress, design guidelines, and applications[J]. J. Biomed. Mater. Res. A, 2016,104(4):1002-1016.  

    23. [23]

      Tao K., Levin A., Adler-Abramovich L., Gazit E.. Fmoc-modified amino acids and short peptides:simple bio-inspired building blocks for the fabrication of functional materials[J]. Chem. Soc. Rev., 2016,45(14):3935-3953. doi: 10.1039/C5CS00889A

    24. [24]

      Dou X. Q., Feng C. L.. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture[J]. Adv. Mater., 2017,29(16). doi: 10.1002/adma.201604062

    25. [25]

      Eskandari S., Guerin T., Toth I., Stephenson R. J.. Recent advances in self-assembled peptides:Implications for targeted drug delivery and vaccine engineering[J]. Adv. Drug. Deliver. Rev., 2017:110-187.  

    26. [26]

      Singh N., Kumar M., Miravet J. F., Ulijn R. V., Escuder B.. Peptide-based molecular hydrogels as supramolecular protein mimics[J]. Chemistry, 2017,23(5):981-993. doi: 10.1002/chem.201602624

    27. [27]

      Song Z., Chen X., You X., Huang K., Dhinakar A., Gu Z., Wu J.. Self-assembly of peptide amphiphiles for drug delivery:the role of peptide primary and secondary structures[J]. Biomater. Sci., 2017,5(12):2369-2380. doi: 10.1039/C7BM00730B

    28. [28]

      Worthington P., Langhans S., Pochan D.. beta-hairpin peptide hydrogels for package delivery[J]. Adv. Drug. Deliv. Rev., 2017:110-136.  

    29. [29]

      Zhou J., Li J., Du X., Xu B.. Supramolecular biofunctional materials[J]. Biomaterials, 2017,129:1-27. doi: 10.1016/j.biomaterials.2017.03.014

    30. [30]

      Zhao X., Pan F., Xu H., Yaseen M., Shan H., Hauser C. A., Zhang S., Lu J. R.. Molecular self-assembly and applications of designer peptide amphiphiles[J]. Chem. Soc. Rev., 2010,39(9):3480-3498. doi: 10.1039/b915923c

    31. [31]

      Luo Z., Zhang S.. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society[J]. Chem. Soc. Rev., 2012,41(13):4736-4754.  

    32. [32]

      Bowerman C. J., Nilsson B. L.. Self-assembly of amphipathic beta-sheet peptides:insights and applications[J]. Biopolymers, 2012,98(3):169-184. doi: 10.1002/bip.22058

    33. [33]

      Draper E. R., Adams D. J.. Low-molecular-weight gels:the state of the art[J]. Chem, 2017,3(3):390-410.

    34. [34]

      van Esch J. H.. We can design molecular gelators, but do we understand them?[J]. Langmuir, 2009,25(15):8392-8394. doi: 10.1021/la901720a

    35. [35]

      Onuchic J. N., Luthey-Schulten Z., Wolynes P. G.. Theory of protein folding:the energy landscape perspective[J]. Annu. Rev. Phys. Chem., 1997,48:545-600.  

    36. [36]

      Li Y., Qin M., Cao Y., Wang W.. Designing the mechanical properties of peptide-based supramolecular hydrogels for biomedical applications[J]. Sci. China Phys. Mech., 2014,57(5):849-858. doi: 10.1007/s11433-014-5427-z

    37. [37]

      Raeburn J., Zamith Cardoso A., Adams D. J.. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels[J]. Chem. Soc. Rev., 2013,42(12):5143-5156. doi: 10.1039/c3cs60030k

    38. [38]

      Mattia E., Otto S.. Supramolecular systems chemistry[J]. Nat. Nanotechnol., 2015,10(2):111-119. doi: 10.1038/nnano.2014.337

    39. [39]

      Cai S. Q., Suo Z. G.. Equations of state for ideal elastomeric gels[J]. EPL, 2012,97(3). doi: 10.1209/0295-5075/97/34009

    40. [40]

      Illeperuma W. R. K., Sun J. Y., Suo Z. G., Vlassak J. J.. Force and stroke of a hydrogel actuator[J]. Soft Matter, 2013,9(35):8504-8511. doi: 10.1039/c3sm51617b

    41. [41]

      Hartgerink J. D., Beniash E., Stupp S. I.. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science, 2001,294(5547):1684-1688. doi: 10.1126/science.1063187

    42. [42]

      van Bommel K. J., van der Pol C., Muizebelt I., Friggeri A., Heeres A., Meetsma A., Feringa B. L., van Esch J.. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture[J]. Angew. Chem. Int. Ed., 2004,43(13):1663-1667. doi: 10.1002/(ISSN)1521-3773

    43. [43]

      Yokoi H., Kinoshita T., Zhang S.. Dynamic reassembly of peptide RADA16 nanofiber scaffold[J]. Proc. Natl. Acad. Sci. USA, 2005,102(24):8414-8419. doi: 10.1073/pnas.0407843102

    44. [44]

      Schneider J. P., Pochan D. J., Ozbas B., Rajagopal K., Pakstis L., Kretsinger J.. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide[J]. J. Am. Chem. Soc., 2002,124(50):15030-15037.  

    45. [45]

      Smith A. M., Williams R. J., Tang C., Coppo P., Collins R. F., Turner M. L., Saiani A., Ulijn R. V.. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets[J]. Adv. Mater., 2008,20(1):37-41. doi: 10.1002/(ISSN)1521-4095

    46. [46]

      Mahler A., Reches M., Rechter M., Cohen S., Gazit E.. Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide[J]. Adv. Mater., 2006,18(11):1365-1370. doi: 10.1002/(ISSN)1521-4095

    47. [47]

      Ma M., Kuang Y., Gao Y., Zhang Y., Gao P., Xu B.. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels[J]. J. Am. Chem. Soc., 2010,132(8):2719-2728. doi: 10.1021/ja9088764

    48. [48]

      Dougherty D. A.. The cation-pi interaction[J]. Acc. Chem. Res., 2013,46(4):885-893. doi: 10.1021/ar300265y

    49. [49]

      Chandler D.. Interfaces and the driving force of hydrophobic assembly[J]. Nature, 2005,437(7059):640-647. doi: 10.1038/nature04162

    50. [50]

      Tsonchev S., Niece K. L., Schatz G. C., Ratner M. A., Stupp S. I.. Phase diagram for assembly of biologically-active peptide amphiphiles[J]. J. Phys. Chem. B, 2008,112(2):441-447. doi: 10.1021/jp076273z

    51. [51]

      Rehm T. H., Schmuck C.. Ion-pair induced self-assembly in aqueous solvents[J]. Chem. Soc. Rev., 2010,39(10):3597-3611. doi: 10.1039/b926223g

    52. [52]

      Legon A. C., Millen D. J.. Angular geometries and other properties of hydrogen-bonded dimers-a simple electrostatic interpretation of the success of the electron-pair model[J]. Chem. Soc. Rev., 1987,16(4):467-498.  

    53. [53]

      Knowles T. P., Fitzpatrick A. W., Meehan S., Mott H. R., Vendruscolo M., Dobson C. M., Welland M. E.. Role of intermolecular forces in defining material properties of protein nanofibrils[J]. Science, 2007,318(5858):1900-1903. doi: 10.1126/science.1150057

    54. [54]

      Hunter C. A., Sanders J. K. M.. The nature of pi-pi interactions[J]. J. Am. Chem. Soc., 1990,112(14):5525-5534. doi: 10.1021/ja00170a016

    55. [55]

      Ma C. D., Wang C., Acevedo-Velez C., Gellman S. H., Abbott N. L.. Modulation of hydrophobic interactions by proximally immobilized ions[J]. Nature, 2015,517(7534):347-350.  

    56. [56]

      Yan X., Zhu P., Li J.. Self-assembly and application of diphenylalanine-based nanostructures[J]. Chem. Soc. Rev., 2010,39(6):1877-1890. doi: 10.1039/b915765b

    57. [57]

      Bell G. I.. Models for specific adhesion of cells to cells[J]. Science, 1978,200(4342):618-627. doi: 10.1126/science.347575

    58. [58]

      Jaremko M., Jaremko L., Kim H. Y., Cho M. K., Schwieters C. D., Giller K., Becker S., Zweckstetter M.. Cold denaturation of a protein dimer monitored at atomic resolution[J]. Nat. Chem. Biol., 2013,9(4):264-270. doi: 10.1038/nchembio.1181

    59. [59]

      Mason J. M., Arndt K. M.. Coiled coil domains:stability, specificity, and biological implications[J]. ChemBioChem, 2004,5(2):170-176.  

    60. [60]

      Pandya M. J., Spooner G. M., Sunde M., Thorpe J. R., Rodger A., Woolfson D. N.. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis[J]. Biochemistry, 2000,39(30):8728-8734. doi: 10.1021/bi000246g

    61. [61]

      Banwell E. F., Abelardo E. S., Adams D. J., Birchall M. A., Corrigan A., Donald A. M., Kirkland M., Serpell L. C., Butler M. F., Woolfson D. N.. Rational design and application of responsive alpha-helical peptide hydrogels[J]. Nat. Mater., 2009,8(7):596-600. doi: 10.1038/nmat2479

    62. [62]

      Vepari C., Kaplan D. L.. Silk as a Biomaterial[J]. Prog. Polym. Sci., 2007,32(8-9):991-1007.  

    63. [63]

      Asakura T., Ohata T., Kametani S., Okushita K., Yazawa K., Nishiyama Y., Nishimura K., Aoki A., Suzuki F., Kaji H., Ulrich A. S., Williamson M. P.. Intermolecular packing in B. mori Silk fibroin:multinuclear NMR Study of the model peptide (Ala-Gly)(15) Defines a heterogeneous antiparallel antipolar mode of assembly in the silk ò form[J]. Macromolecules, 2015,48(1):28-36. doi: 10.1021/ma502191g

    64. [64]

      Altman G. H., Diaz F., Jakuba C., Calabro T., Horan R. L., Chen J. S., Lu H., Richmond J., Kaplan D. L.. Silk-based biomaterials[J]. Biomaterials., 2003,24(3):401-416. doi: 10.1016/S0142-9612(02)00353-8

    65. [65]

      Zhang S., Holmes T., Lockshin C., Rich A.. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane[J]. Proc. Natl. Acad. Sci. USA., 1993,90(8):3334-3338. doi: 10.1073/pnas.90.8.3334

    66. [66]

      Collier J. H., Hu B. H., Ruberti J. W., Zhang J., Shum P., Thompson D. H., Messersmith P. B.. Thermally and photochemically triggered self-assembly of peptide hydrogels[J]. J. Am. Chem. Soc., 2001,123(38):9463-9464. doi: 10.1021/ja011535a

    67. [67]

      Bowerman C. J., Liyanage W., Federation A. J., Nilsson B. L.. Tuning beta-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity[J]. Biomacromolecules, 2011,12(7):2735-2745.  

    68. [68]

      Lee N. R., Bowerman C. J., Nilsson B. L.. Effects of varied sequence pattern on the self-assembly of amphipathic peptides[J]. Biomacromolecules., 2013,14(9):3267-3277. doi: 10.1021/bm400876s

    69. [69]

      Dong H., Paramonov S. E., Aulisa L., Bakota E. L., Hartgerink J. D.. Self-assembly of multidomain peptides:balancing molecular frustration controls conformation and nanostructure[J]. J. Am. Chem. Soc., 2007,129(41):12468-12472. doi: 10.1021/ja072536r

    70. [70]

      Yang Z. M., Xu K. M., Guo Z. F., Guo Z. H., Xu B.. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death[J]. Adv. Mater., 2007,19(20):3152-3156. doi: 10.1002/adma.200701971

    71. [71]

      Yang Z. M., Ho P. L., Liang G. L., Chow K. H., Wang Q. G., Cao Y., Guo Z. H., Xu B.. Using beta-lactamase to trigger supramolecular hydrogelation[J]. J. Am. Chem. Soc., 2007,129(2):266-267. doi: 10.1021/ja0675604

    72. [72]

      Zhang Y., Kuang Y., Gao Y., Xu B.. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels[J]. Langmuir, 2011,27(2):529-537. doi: 10.1021/la1020324

    73. [73]

      Wang H. M., Yang C. H., Tan M., Wang L., Kong D. L., Yang Z. M.. A structure-gelation ability study in a short peptide-based nSuper Hydrogelatoro system[J]. Soft Matter, 2011,7(8):3897-3905. doi: 10.1039/c0sm01405b

    74. [74]

      Liang C. H., Zheng D. B., Shi F., Xu T. Y., Yang C. H., Liu J. F., Wang L., Yang Z. M.. Enzyme-assisted peptide folding, assembly and anti-cancer properties[J]. Nanoscale, 2017,9(33):11987-11993. doi: 10.1039/C7NR04370H

    75. [75]

      Wang Z. Y., Liang C. H., Shi F., He T., Gong C. Y., Wang L., Yang Z. M.. Cancer vaccines using supramolecular hydrogels of NSAID-modified peptides as adjuvants abolish tumorigenesis[J]. Nanoscale, 2017,9(37):14058-14064. doi: 10.1039/C7NR04990K

    76. [76]

      Zhan J., Cai Y. B., Ji S. L., He S. S., Cao Y., Ding D., Wang L., Yang Z. M.. Spatiotemporal control of supramolecular self-assembly and function[J]. ACS Appl. Mater. Interfaces, 2017,9(11):10012-10018.  

    77. [77]

      Cai Y. B., Shen H. S., Zhan J., Lin M. L., Dai L. H., Ren C. H., Shi Y., Liu J. F., Gao J., Yang Z. M.. Supramolecular "Trojan Horse" for nuclear delivery of dual anticancer drugs[J]. J. Am. Chem. Soc., 2017,139(8):2876-2879. doi: 10.1021/jacs.6b12322

    78. [78]

      Wang H. M., Luo Z., Wang Y. C. Z., He T., Yang C. B., Ren C. H., Ma L. S., Gong C. Y., Li X. Y., Yang Z. M.. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants[J]. Adv. Funct. Mater., 2016,26(11):1822-1829.  

    79. [79]

      Zhang X. L., Dong C. M., Huang W. Y., Wang H. M., Wang L., Ding D., Zhou H., Long J. F., Wang T. L., Yang Z. M.. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation[J]. Nanoscale, 2015,7(40):16666-16670. doi: 10.1039/C5NR05213K

    80. [80]

      Zhang J. W., Ou C. W., Shi Y., Wang L., Chen M. S., Yang Z. M.. Visualized detection of melamine in milk by supramolecular hydrogelations[J]. Chem. Commun., 2014,50(85):12873-12876. doi: 10.1039/C4CC05826G

    81. [81]

      Hai Z. J., Li J. D., Wu J. J., Xu J. C., Liang G. L.. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence[J]. J. Am. Chem. Soc., 2017,139(3):1041-1044. doi: 10.1021/jacs.6b11041

    82. [82]

      Wu C. F., Zheng Z., Guo Y. N., Tian C. L., Xue Q., Liang G. L.. Fluorine substitution enhances the self-assembling ability of hydrogelators[J]. Nanoscale, 2017,9(32):11429-11433.  

    83. [83]

      Zheng Z., Chen P. Y., Xie M. L., Wu C. F., Luo Y. F., Wang W. T., Jiang J., Liang G. L.. Cell environment-differentiated self-assembly of nanofibers[J]. J. Am. Chem. Soc., 2016,138(35):11128-11131. doi: 10.1021/jacs.6b06903

    84. [84]

      Ding Y., Li Y., Qin M., Cao Y., Wang W.. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability[J]. Langmuir, 2013,29(43):13299-13306. doi: 10.1021/la4029639

    85. [85]

      Xue B., Qin M., Wang T. K., Wu J. H., Luo D. J., Jiang Q., Li Y., Cao Y., Wang W.. Electrically controllable actuators based on supramolecular peptide hydrogels[J]. Adv. Funct. Mater., 2016,26(48):9053-9062. doi: 10.1002/adfm.v26.48

    86. [86]

      Li Y., Wang L.. Removing organic dyes by using a small peptide hydrogel[J]. Chem. Lett., 2016,45(11):1253-1255. doi: 10.1246/cl.160597

    87. [87]

      Cheng W., Li Y.. Peptide hydrogelation triggered by enzymatic induced pH switch[J]. Sci. China Phys. Mech., 2016,59(7):678-711.  

    88. [88]

      Newcomb C. J., Bitton R., Velichko Y. S., Snead M. L., Stupp S. I.. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization[J]. Small, 2012,8(14):2195-2202.  

    89. [89]

      Pashuck E. T., Cui H. G., Stupp S. I.. Tuning supramolecular rigidity of peptide fibers through molecular structure[J]. J. Am. Chem. Soc., 2010,132(17):6041-6046. doi: 10.1021/ja908560n

    90. [90]

      da Silva R. M., van der Zwaag D., Albertazzi L., Lee S. S., Meijer E. W., Stupp S. I.. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres[J]. Nat. Commun., 2016,7. doi: 10.1038/ncomms11561

    91. [91]

      Ortony J. H., Qiao B., Newcomb C. J., Keller T. J., Palmer L. C., Deiss-Yehiely E., Olvera de la Cruz M., Han S., Stupp S. I.. Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure[J]. J. Am. Chem. Soc., 2017,139(26):8915-8921. doi: 10.1021/jacs.7b02969

    92. [92]

      Pochan D. J., Schneider J. P., Kretsinger J., Ozbas B., Rajagopal K., Haines L.. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide[J]. J. Am. Chem. Soc., 2003,125(39):11802-11803. doi: 10.1021/ja0353154

    93. [93]

      Lamm M. S., Rajagopal K., Schneider J. P., Pochan D. J.. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly[J]. J. Am. Chem. Soc., 2005,127(47):16692-16700.  

    94. [94]

      Salick D. A., Pochan D. J., Schneider J. P.. Design of an injectable beta-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus[J]. Adv. Mater., 2009,21(41):4120-4123.  

    95. [95]

      Rughani R. V., Salick D. A., Lamm M. S., Yucel T., Pochan D. J., Schneider J.P.. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel[J]. Biomacromolecules, 2009,10(5):1295-1304. doi: 10.1021/bm900113z

    96. [96]

      Rajagopal K., Lamm M. S., Haines-Butterick L. A., Pochan D. J., Schneider J. P.. Tuning the pH Responsiveness of beta-Hairpin peptide folding, self-assembly, and hydrogel material formation[J]. Biomacromolecules, 2009,10(9):2619-2625. doi: 10.1021/bm900544e

    97. [97]

      Ding B. Y., Li Y., Qin M., Ding Y., Cao Y., Wang W.. Two approaches for the engineering of homogeneous small-molecule hydrogels[J]. Soft Matter, 2013,9(18):4672-4680. doi: 10.1039/c3sm50324k

    98. [98]

      Wang J., Liu K., Xing R., Yan X.. Peptide self-assembly:thermodynamics and kinetics[J]. Chem. Soc. Rev., 2016,45(20):5589-5604. doi: 10.1039/C6CS00176A

    99. [99]

      Sasselli I. R., Halling P. J., Ulijn R. V., Tuttle T.. Supramolecular fibers in gels can be at thermodynamic equilibrium:a simple packing model reveals preferential fibril formation versus crystallization[J]. ACS Nano, 2016,10(2):2661-2668. doi: 10.1021/acsnano.5b07690

    100. [100]

      Adams D. J., Morris K., Chen L., Serpell L. C., Bacsa J., Day G. M.. The delicate balance between gelation and crystallisation:structural and computational investigations[J]. Soft Matter, 2010,6(17):4144-4156. doi: 10.1039/c0sm00409j

    101. [101]

      Lan Y., Corradini M. G., Weiss R. G., Raghavan S. R., Rogers M. A.. To gel or not to gel:correlating molecular gelation with solvent parameters[J]. Chem. Soc. Rev., 2015,44(17):6035-6058. doi: 10.1039/C5CS00136F

    102. [102]

      Raynal M., Bouteiller L.. Organogel formation rationalized by Hansen solubility parameters[J]. Chem. Commun., 2011,47(29):8271-8273. doi: 10.1039/c1cc13244j

    103. [103]

      Lloyd G. O., Steed J. W.. Anion-tuning of supramolecular gel properties[J]. Nat. Chem., 2009,1(6):437-442. doi: 10.1038/nchem.283

    104. [104]

      Massi F., Straub J. E.. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation[J]. Proteins, 2001,42(2):217-229.  

    105. [105]

      Straub J. E., Thirumalai D.. Toward a molecular theory of early and late events in monomer to amyloid fibril formation[J]. Annu. Rev. Phys. Chem., 2011,62:437-463. doi: 10.1146/annurev-physchem-032210-103526

    106. [106]

      Lansbury P. T.. A reductionist view of Alzheimer's disease[J]. Acc. Chem. Res., 1996,29(7):317-321. doi: 10.1021/ar950159u

    107. [107]

      Hall D., Hirota N., Dobson C. M.. A toy model for predicting the rate of amyloid formation from unfolded protein[J]. J. Mol. Biol., 2005,351(1):195-205. doi: 10.1016/j.jmb.2005.05.013

    108. [108]

      Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B.. On the nucleation and growth of amyloid beta-protein fibrils:detection of nuclei and quantitation of rate constants[J]. Proc. Natl. Acad. Sci. USA, 1996,93(3):1125-1129. doi: 10.1073/pnas.93.3.1125

    109. [109]

      Lomakin A., Teplow D. B., Kirschner D. A., Benedek G. B.. Kinetic theory of fibrillogenesis of amyloid beta-protein[J]. Proc. Natl. Acad. Sci. USA., 1997,94(15):7942-7947. doi: 10.1073/pnas.94.15.7942

    110. [110]

      Gibson T. J., Murphy R. M.. Design of peptidyl compounds that affect beta-amyloid aggregation:importance of surface tension and context[J]. Biochemistry, 2005,44(24):8898-8907. doi: 10.1021/bi050225s

    111. [111]

      Knowles T. P., Waudby C. A., Devlin G. L., Cohen S. I., Aguzzi A., Vendruscolo M., Terentjev E. M., Welland M. E., Dobson C. M.. An analytical solution to the kinetics of breakable filament assembly[J]. Science, 2009,326(5959):1533-1537. doi: 10.1126/science.1178250

    112. [112]

      Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T.. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy[J]. Chem. Biol., 1997,4(2):119-125. doi: 10.1016/S1074-5521(97)90255-6

    113. [113]

      Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., Teplow D. B.. Amyloid beta-protein fibrillogenesis[J]. Detection of a protofibrillar intermediate. J. Biol. Chem., 1997,272(35):22364-22372.  

    114. [114]

      Arosio P., Knowles T. P. J., Linse S.. On the lag phase in amyloid fibril formation[J]. Phys. Chem. Chem. Phys., 2015,17(12):7606-7618. doi: 10.1039/C4CP05563B

    115. [115]

      Fletcher N. L., Lockett C. V., Dexter A. F.. A pH-responsive coiled-coil peptide hydrogel[J]. Soft Matter, 2011,7(21):10210-10218.  

    116. [116]

      Massi F., Straub J. E.. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation[J]. Proteins, 2001,42(2):217-229. doi: 10.1002/(ISSN)1097-0134

    117. [117]

      Ahmed S., Pramanik B., Sankar K. N. A., Srivastava A., Singha N., Dowari P., Srivastava A., Mohanta K., Debnath A., Das D.. Solvent assisted tuning of morphology of a peptide-perylenediimide conjugate: helical fibers to nano-rings and their differential semiconductivity[J]. Sci. Rep., 2017,7(1). doi: 10.1038/s41598-017-09730-z

    118. [118]

      Tian Y., Zhang H. V., Kiick K. L., Saven J. G., Pochan D. J.. Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide[J]. Org. Biomol. Chem., 2017,15(29):6109-6118. doi: 10.1039/C7OB01197K

    119. [119]

      Wang Y., Huang R., Qi W., Wu Z., Su R., He Z.. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers[J]. Nanotechnology, 2013. doi: 10.1088/0957-4484/24/46/465603

    120. [120]

      Heuser T., Weyandt E., Walther A.. Biocatalytic feedback-driven temporal programming of self-regulating peptide hydrogels[J]. Angew. Chem. Int. Ed., 2015,54(45):13258-13262. doi: 10.1002/anie.201505013

    121. [121]

      Conte M. P., Singh N., Sasselli I. R., Escuder B., Ulijn R. V.. Metastable hydrogels from aromatic dipeptides[J]. Chem. Commun., 2016,52(96):13889-13892.  

    122. [122]

      Debnath S., Roy S., Ulijn R. V.. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly[J]. J. Am. Chem. Soc., 2013,135(45):16789-16792. doi: 10.1021/ja4086353

    123. [123]

      Williams R. J., Smith A. M., Collins R., Hodson N., Das A. K., Ulijn R. V.. Enzyme-assisted self-assembly under thermodynamic control[J]. Nat. Nanotechnol., 2009,4(1):19-24. doi: 10.1038/nnano.2008.378

    124. [124]

      Adams D. J., Butler M. F., Frith W. J., Kirkland M., Mullen L., Sanderson P.. A new method for maintaining homogeneity during liquid-hydrogel transitions using low molecular weight hydrogelators[J]. Soft Matter, 2009,5(9):1856-1862. doi: 10.1039/b901556f

    125. [125]

      Ferreiro D. U., Komives E. A., Wolynes P. G.. Frustration in biomolecules[J]. Q. Rev. Biophys., 2014,47(4):285-363. doi: 10.1017/S0033583514000092

    126. [126]

      Wolynes P.G.. Evolution, energy landscapes and the paradoxes of protein folding[J]. Biochimie., 2015,119:218-230. doi: 10.1016/j.biochi.2014.12.007

    127. [127]

      Levy Y., Onuchic J. N.. Mechanisms of protein assembly: lessons from minimalist models[J]. Acc. Chem. Res., 2006,39(2):135-142. doi: 10.1021/ar040204a

    128. [128]

      Friedel M., Shea J. E.. Self-assembly of peptides into a beta-barrel motif[J]. J. Chem. Phys., 2004,120(12):5809-5823. doi: 10.1063/1.1649934

    129. [129]

      Schmidt M., Rohou A., Lasker K., Yadav J. K., Schiene-Fischer C., Fandrich M., Grigorieff N.. Peptide dimer structure in an Abeta(1-42) fibril visualized with cryo-EM[J]. Proc. Natl. Acad. Sci. USA, 2015,112(38):11858-11863. doi: 10.1073/pnas.1503455112

    130. [130]

      Pinotsi D., Kaminski Schierle G. S., Kaminski C. F.. Optical Super-resolution imaging of beta-amyloid aggregation in vitro and in vivo: method and techniques[J]. Method. Mol. Biol., 2016,1303:125-141.  

    131. [131]

      Milhiet P. E., Yamamoto D., Berthoumieu O., Dosset P., Le Grimellec C., Verdier J. M., Marchal S., Ando T.. Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy[J]. PLoS One., 2010,5(10). doi: 10.1371/journal.pone.0013240

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    6. [6]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    7. [7]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    8. [8]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Xiaoyu HouMingyang LiuHu WuNan WangXu ZhaoXifeng QinXiaomin SuHanwei HuangZihan MaJiahao LiuOnder ErgonulFüsun CanWei LiuZhiqing PangFunan Liu . Differential releasing hydrogel loaded with oncolytic viruses and anti-CAFs drug to enhance oncology therapeutic efficacy. Chinese Chemical Letters, 2025, 36(5): 110106-. doi: 10.1016/j.cclet.2024.110106

    11. [11]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    12. [12]

      Jian LiJinjin ChenQi-Long HuZhen WangXiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126

    13. [13]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    14. [14]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    15. [15]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    16. [16]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    17. [17]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    18. [18]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    19. [19]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    20. [20]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

Metrics
  • PDF Downloads(0)
  • Abstract views(1013)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return