Citation: Yang Liu, Nan Song, Li Chen, Zhi-Gang Xie. BODIPY@Ir(Ⅲ) Complexes Assembling Organic Nanoparticles for Enhanced Photodynamic Therapy[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 417-424. doi: 10.1007/s10118-018-2096-9 shu

BODIPY@Ir(Ⅲ) Complexes Assembling Organic Nanoparticles for Enhanced Photodynamic Therapy

  • Corresponding author: Li Chen, chenl686@nenu.edu.cn Zhi-Gang Xie, xiez@ciac.ac.cn
  • Received Date: 27 September 2017
    Accepted Date: 23 November 2017
    Available Online: 27 December 2017

  • We present a new cyclometalated Ir(Ⅲ) complexes IrBDP, which could self-assemble into organic nanoparticles (IrBDP NPs). IrBDP NPs show enhanced photodynamic effect and can be engulfed by HeLa cells for cell imaging as well as photodynamic therapy (PDT) upon low energy irradiation.
  • 加载中
    1. [1]

      Li H., Wang P., Deng Y., Zeng M., Tang Y., Zhu W. H., Cheng Y.. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma[J]. Biomaterials, 2017,139:30-38. doi: 10.1016/j.biomaterials.2017.05.030

    2. [2]

      Li X., Gao M., Xin K., Zhang L., Ding D., Kong D., Wang Z., Shi Y., Kiessling F., Lammers T., Cheng J., Zhao Y.. Singlet oxygen-responsive micelles for enhanced photodynamic therapy[J]. J. Control. Release, 2017,260:12-21. doi: 10.1016/j.jconrel.2017.05.025

    3. [3]

      Linares I. A. P., de Oliveira K. T., Perussi J. R.. Chlorin derivatives sterically-prevented from self-aggregation with high antitumor activity for photodynamic therapy[J]. Dyes Pigm., 2017,145:518-527. doi: 10.1016/j.dyepig.2017.06.011

    4. [4]

      Xiong H., Zhou D., Zheng X., Qi Y., Wang Y., Jing X., Huang Y.. Stable amphiphilic supramolecular self-assembly based on cyclodextrin and carborane for the efficient photodynamic therapy[J]. Chem. Commun., 2017,53:3422-3425. doi: 10.1039/C6CC10059G

    5. [5]

      Du E., Hu X., Roy S., Wang P., Deasy K., Mochizuki T., Zhang Y.. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy[J]. Chem. Commun., 2017,53:6033-6036. doi: 10.1039/C7CC03337K

    6. [6]

      Gu B., Wu W., Xu G., Feng G., Yin F., Chong P. H. J., Qu J., Yong K. T., Liu B.. Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregationinduced emission characteristics[J]. Adv. Mater., 2017,29(28). doi: 10.1002/adma.201701076

    7. [7]

      Huang L., Li Z., Zhao Y., Yang J., Yang Y., Pendharkar A. I., Zhang Y., Kelmar S., Chen L., Wu W., Zhao J., Han G.. Enhancing photodynamic therapy through resonance energy transfer constructed near-Infrared photosensitized nanoparticles[J]. Adv. Mater., 2017,29(28). doi: 10.1002/adma.201604789

    8. [8]

      Yue C., Yang Y., Song J., Alfranca G., Zhang C., Zhang Q., Yin T., Pan F., de la Fuente J. M., Cui D.. Mitochondriatargeting near-infrared light-triggered thermosensitive liposomes for localized photothermal and photodynamic ablation of tumors combined with chemotherapy[J]. Nanoscale, 2017,9:11103-11118. doi: 10.1039/C7NR02193C

    9. [9]

      Zheng Y., Lu H., Jiang Z., Guan Y., Zou J., Wang X., Cheng R., Gao H.. Low-power white light triggered AIE polymer nanoparticles with high ROS quantum yield for mitochondria-targeted and image-guided photodynamic therapy[J]. J. Mater. Chem. B, 2017,5:6277-6281.  

    10. [10]

      Li Y., Zheng X., Zhang X., Liu S., Pei Q., Zheng M., Xie Z.. Porphyrin-based carbon dots for photodynamic therapy of hepatoma[J]. Adv. Healthc. Mater., 2017,6(1). doi: 10.1002/adhm.201600924

    11. [11]

      Liu W., Wang Y. M., Li Y. H., Cai S. J., Yin X. B., He X. W., Zhang Y. K.. Fluorescent imaging-guided chemotherapyand-photodynamic dual therapy with nanoscale porphyrin metal-organic framework[J]. Small, 2017,13(17). doi: 10.1002/smll.201603459

    12. [12]

      Rui L., Xue Y., Wang Y., Gao Y., Zhang W.. A mitochondria-targeting supramolecular photosensitizer based on pillararene for photodynamic therapy[J]. Chem. Commun., 2017,53:3126-3129. doi: 10.1039/C7CC00950J

    13. [13]

      Zhang W., Lin W., Zheng X., He S., Xie Z.. Comparing effects of redox sensitivity of organic nanoparticles to photodynamic activity[J]. Chem. Mater., 2017,29:1856-1863. doi: 10.1021/acs.chemmater.7b00207

    14. [14]

      Zheng X., Wang L., Pei Q., He S., Liu S., Xie Z.. Metal-organic framework@porous organic polymer nanocomposite for photodynamic therapy[J]. Chem. Mater., 2017,29:2374-2381. doi: 10.1021/acs.chemmater.7b00228

    15. [15]

      Isik M., Guliyev R., Kolemen S., Altay Y., Senturk B., Tekinay T., Akkaya E. U.. Designing an intracellular fluorescent probe for glutathione:two modulation sites for selective signal transduction[J]. Org. Lett., 2014,16:3260-3263. doi: 10.1021/ol501272z

    16. [16]

      Isik M., Ozdemir T., Turan I. S., Kolemen S., Akkaya E. U.. Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents[J]. Org. Lett., 2013,15:216-219. doi: 10.1021/ol303306s

    17. [17]

      Göl C., Malkoç M., Yeşilot S., Durmuş M.. Novel zinc(Ⅱ) phthalocyanine conjugates bearing different numbers of BODIPY and iodine groups as substituents on the periphery[J]. Dyes Pigm., 2014,111:81-90. doi: 10.1016/j.dyepig.2014.06.003

    18. [18]

      Kim B., Sui B., Yue X., Tang S., Tichy M. G., Belfield K. D.. In vitro photodynamic studies of a BODIPY-based photosensitizer[J]. Eur. J. Org. Chem., 2017(1):25-28.  

    19. [19]

      Wang W., Wang L., Li Z., Xie Z.. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy[J]. Chem. Commun., 2016,52:5402-5405. doi: 10.1039/C6CC01048B

    20. [20]

      Guo Z., Zou Y., He H., Rao J., Ji S., Cui X., Ke H., Deng Y., Yang H., Chen C., Zhao Y., Chen H.. Bifunctional platinated nanoparticles for photoinduced tumor ablation[J]. Adv. Mater., 2016,46(28):10155-10164.  

    21. [21]

      Liu Y., Li Z., Chen L., Xie Z.. Near infrared BODIPY-platinum conjugates for imaging, photodynamic therapy and chemotherapy[J]. Dyes Pigm., 2017,141:5-12. doi: 10.1016/j.dyepig.2017.01.075

    22. [22]

      Cakmak Y., Kolemen S., Duman S., Dede Y., Dolen Y., Kilic B., Kostereli Z., Yildirim L. T., Dogan A. L., Guc D., Akkaya E. U.. Designing excited states:theory-guided access to efficient photosensitizers for photodynamic action[J]. Angew. Chem., 2011,50:11937-11941. doi: 10.1002/anie.v50.50

    23. [23]

      Epelde-Elezcano N., Palao E., Manzano H., PrietoCastaneda A., Agarrabeitia A. R., Tabero A., Villanueva A., de la Moya S., Lopez-Arbeloa I., Martinez-Martinez V., Ortiz M. J.. Rational design of advanced photosensitizers based on orthogonal BODIPY dimers to finely modulate singlet oxygen generation[J]. Chem. Eur. J., 2017,23:4837-4848. doi: 10.1002/chem.v23.20

    24. [24]

      Ozdemir T., Bila J. L., Sozmen F., Yildirim L. T., Akkaya E. U.. Orthogonal Bodipy trimers as photosensitizers for photodynamic action[J]. Org. Lett., 2016,18:4821-4823. doi: 10.1021/acs.orglett.6b02418

    25. [25]

      Wu W., Cui X., Zhao J.. Hetero BODIPY-dimers as heavy atom-free triplet photosensitizers showing a long-lived triplet excited state for triplet-triplet annihilation upconversion[J]. Chem. Commun., 2013,49:9009-9011. doi: 10.1039/c3cc45470c

    26. [26]

      Zhang X. F., Yang X.. Photosensitizer that selectively generates singlet oxygen in nonpolar environments:photophysical mechanism and efficiency for a covalent BODIPY dimer[J]. J. Phys. Chem. B, 2013,117:9050-9055. doi: 10.1021/jp405102m

    27. [27]

      Mari C., Huang H., Rubbiani R., Schulze M., Würthner F., Chao H., Gasser G.. Evaluation of perylene bisimide-based RuⅡand IrⅢ complexes as photosensitizers for photodynamic therapy[J]. Eur. J. Inorg. Chem., 2017,2017:1745-1752.  

    28. [28]

      Wang L., Yin H., Cui P., Hetu M., Wang C., Monro S., Schaller R. D., Cameron C. G., Liu B., Kilina S., McFarland S. A., Sun W.. Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2, 3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents[J]. Dalton Trans, 2017,46:8091-8103. doi: 10.1039/C7DT00913E

    29. [29]

      Xiang H., Chen H., Tham H. P., Phua S. Z. F., Liu J. G., Zhao Y.. Cyclometalated iridium(Ⅲ)-complex-based micelles for glutathione-responsive targeted chemotherapy and photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9:27553-27562. doi: 10.1021/acsami.7b09506

    30. [30]

      Zheng Y., He L., Zhang D. Y., Tan C. P., Ji L. N., Mao Z. W.. Mixed-ligand iridium(Ⅲ) complexes as photodynamic anticancer agents[J]. Dalton Trans., 2017,46:11395-11407. doi: 10.1039/C7DT02273E

    31. [31]

      Liu J., Jin C., Yuan B., Liu X., Chen Y., Ji L., Chao H.. Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(Ⅲ) complexes[J]. Chem. Commun., 2017,53:2052-2055. doi: 10.1039/C6CC10015E

    32. [32]

      McKenzie L. K., Sazanovich I. V., Baggaley E., Bonneau M., Guerchais V., Williams J. A., Weinstein J. A., Bryant H. E.. Metal complexes for two-photon photodynamic therapy:a cyclometallated iridium complex induces two-photon photosensitization of cancer cells under near-IR light[J]. Chem. Eur. J., 2017,23:234-238. doi: 10.1002/chem.v23.2

    33. [33]

      Nam J. S., Kang M. G., Kang J., Park S. Y., Lee S. J., Kim H. T., Seo J. K., Kwon O. H., Lim M. H., Rhee H. W., Kwon T. H.. Endoplasmic reticulum-localized iridium(Ⅲ) complexes as efficient photodynamic therapy agents via protein modifications[J]. J. Am. Chem. Soc., 2016,138:10968-10977. doi: 10.1021/jacs.6b05302

    34. [34]

      Qiu K., Ouyang M., Liu Y., Huang H., Liu C., Chen Y., Ji L., Chao H.. Two-photon photodynamic ablation of tumor cells by mitochondria-targeted iridium(Ⅲ) complexes in aggregate states[J]. J. Mater. Chem. B, 2017,5:5488-5498. doi: 10.1039/C7TB00731K

    35. [35]

      Tian X., Zhu Y., Zhang M., Luo L., Wu J., Zhou H., Guan L., Battaglia G., Tian Y.. Localization matters:a nuclear targeting two-photon absorption iridium complex in photodynamic therapy[J]. Chem. Commun., 2017,53:3303-3306. doi: 10.1039/C6CC09470H

    36. [36]

      Deligonul N., Browne A. R., Golen J. A., Rheingold A. L., Gray T. G.. Cyclometalated iridium(Ⅲ) complexes of azadipyrromethene chromophores[J]. Organometallics, 2014,33:637-643. doi: 10.1021/om4007032

    37. [37]

      Zhou J., Gai L., Zhou Z., Mack J., Xu K., Zhao J., Qiu H., Chan K. S., Shen Z.. Highly efficient near IR photosensitizers based on Ir-C bonded porphyrin-aza-BODIPY conjugates[J]. RSC Adv., 2016,6:72115-72120. doi: 10.1039/C6RA10131C

    38. [38]

      Majumdar P., Yuan X., Li S., Le Guennic B., Ma J., Zhang C., Jacquemin D., Zhao J.. Cyclometalated Ir(Ⅲ) complexes with styryl-BODIPY ligands showing near IR absorption/emission:preparation, study of photophysical properties and application as photodynamic/luminescence imaging materials[J]. J. Mater. Chem. B, 2014,2:2838-2854. doi: 10.1039/C4TB00284A

    39. [39]

      Palao E., Sola-Llano R., Tabero A., Manzano H., Agarrabeitia A. R., Villanueva A., Lopez-Arbeloa I., Martinez-Martinez V., Ortiz M. J.. Acetylacetonate BODIPY-biscyclometalated iridium(Ⅲ) complexes:effective strategy towards smarter fluorescent photosensitizer agents[J]. Chem. Eur. J., 2017,23:10139-10147. doi: 10.1002/chem.v23.42

    40. [40]

      Sun J., Zhong F., Yi X., Zhao J.. Efficient enhancement of the visible-light absorption of cyclometalated Ir(Ⅲ) complexes triplet photosensitizers with BODIPY and applications in photooxidation and triplet-triplet annihilation upconversion[J]. Inorg. Chem., 2013,52:6299-6310. doi: 10.1021/ic302210b

    41. [41]

      Tabrizi L., Chiniforoshan H.. New cyclometalated Ir(Ⅲ) complexes with NCN pincer and meso-phenylcyanamide BODIPY ligands as efficient photodynamic therapy agents[J]. RSC Adv., 2017,7:34160-34169. doi: 10.1039/C7RA05579J

    42. [42]

      Khairoutdinov R. F., Doubova L. V., Haddon R. C., Saraf L.. Persistent photoconductivity in chemically modified single-wall carbon nanotubes[J]. J. Phys. Chem. B, 2004,108:19976-19981. doi: 10.1021/jp046495m

    43. [43]

      Li Z., Zheng M., Guan X., Xie Z., Huang Y., Jing X.. Unadulterated BODIPY-dimer nanoparticles with high stability and good biocompatibility for cellular imaging[J]. Nanoscale, 2014,6:5662-5665. doi: 10.1039/C4NR00521J

    44. [44]

      Liu Y., Song N., Chen L., Xie Z.. Triple-BODIPY organic nanoparticles with particular fluorescence emission[J]. Dyes Pigm., 2017,147:241-245. doi: 10.1016/j.dyepig.2017.08.026

  • 加载中
    1. [1]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    4. [4]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    5. [5]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    6. [6]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    7. [7]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    8. [8]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    9. [9]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    10. [10]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    11. [11]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    12. [12]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    13. [13]

      Baoli YinXinlin LiuZhe LiZhifei YeYoujuan WangXia YinSulai LiuGuosheng SongShuangyan HuanXiao-Bing Zhang . Ratiometric NIR-Ⅱ fluorescent organic nanoprobe for imaging and monitoring tumor-activated photodynamic therapy. Chinese Chemical Letters, 2025, 36(5): 110119-. doi: 10.1016/j.cclet.2024.110119

    14. [14]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    15. [15]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    16. [16]

      Yuequan WangCongtian WuChengcheng FengQin ChenZhonggui HeShenwu ZhangCong LuoJin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902

    17. [17]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    18. [18]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    19. [19]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    20. [20]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

Metrics
  • PDF Downloads(0)
  • Abstract views(879)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return