Citation: Wei Wang, Fei Gao, Yuan Yao, Shao-Liang Lin. Directional Photo-manipulation of Self-assembly Patterned Microstructures[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 297-305. doi: 10.1007/s10118-018-2087-x shu

Directional Photo-manipulation of Self-assembly Patterned Microstructures

  • Corresponding author: Shao-Liang Lin, slin@ecust.edu.cn
  • Received Date: 28 September 2017
    Accepted Date: 6 November 2017
    Available Online: 20 December 2017

  • Highly intricate surface architectures derived from patterned polymer microstructures have received increasing concern in recent years. Directional photo-manipulation (DPM) of azopolymers is one of the effective strategies to tune the patterned polymer microstructures through directional mass migration (DMM) upon polarized light illumination. In this feature article, we emphasize the latest advances of DPM on azopatterns created by self-assembly. The mechanism of DMM, the photo-manipulation performance, and functions of manipulated patterns are introduced in sequence. As presented, DPM can manipulate the as-prepared microstructures feasibly by taking the advantages of non-contacting and nondestructive characters. Moreover, the challenges and opportunities of DPM strategy are discussed in conclusion.
  • 加载中
    1. [1]

      Li L., Köpf M. H., Gurevich S. V., Friedrich R., Chi L.. Structure formation by dynamic self-assembly[J]. Small, 2012,8(4):488-503. doi: 10.1002/smll.v8.4

    2. [2]

      Nie Z., Kumacheva E.. Patterning furfaces with functional polymers[J]. Nat. Mater., 2008,7(4):277-290. doi: 10.1038/nmat2109

    3. [3]

      Huang H., Yi G., Zu X., Zhong B., Luo H.. Patterning of triblock copolymer film and its application for surface-enhanced raman scattering[J]. Chinese J. Polym. Sci., 2017,35(5):623-630. doi: 10.1007/s10118-017-1914-9

    4. [4]

      Biswas A., Bayer I. S., Biris A. S., Wang T., Dervishi E., Faupel F.. Advances in top-down and bottom-up surface nanofabrication:Techniques, applications & future prospects[J]. Adv. Colloid Interface Sci., 2012,170(1):2-27.  

    5. [5]

      Liu X., Yang J., Zha L., Jiang Z.. Self-assembly of hollow PNIPAM microgels to form discontinuously hollow fibers[J]. Chinese J. Polym. Sci., 2014,32(11):1544-1549. doi: 10.1007/s10118-014-1508-8

    6. [6]

      Ma H., Hao J.. Ordered patterns and structures via interfacial self-assembly:Superlattices, honeycomb structures and coffee rings[J]. Chem. Soc. Rev., 2011,40(11):5457-5471. doi: 10.1039/c1cs15059f

    7. [7]

      Wang D., Möhwald H.. Template-directed colloidal self-assembly-the route to 'top-down' nanochemical engineering[J]. J. Mater. Chem., 2004,14(4):459-468. doi: 10.1039/B311283G

    8. [8]

      Li J., Shim J., Deng J., Overvelde J. T., Zhu X., Bertoldi K., Yang S.. Switching periodic membranes via pattern transformation and shape memory effect[J]. Soft Matter, 2012,8(40):10322-10328. doi: 10.1039/c2sm25816a

    9. [9]

      Yabu H., Jia R., Matsuo Y., Ijiro K., Yamamoto S., Nishino F., Takaki T., Kuwahara M., Shimomura M.. Preparation of highly oriented nano-pit arrays by thermal shrinking of honeycomb-patterned polymer films[J]. Adv. Mater., 2008,20(21):4200-4204.  

    10. [10]

      Zhou J., Sheiko S. S.. Reversible shape-shifting in polymeric materials[J]. J. Polym. Sci., Part B:Polym. Phys., 2016,54(14):1365-1380. doi: 10.1002/polb.v54.14

    11. [11]

      Hu Y., Guo W., Kahn J. S., Aleman-Garcia M. A., Willner I.. A shape-memory DNA-based hydrogel exhibiting two internal memories[J]. Angew. Chem. Int. Ed., 2016,55(13):4210-4214. doi: 10.1002/anie.201511201

    12. [12]

      Wang W., Lin J., Cai C., Lin S.. Optical properties of amphiphilic copolymer-based self-assemblies[J]. Eur. Polym. J., 2015,65:112-131. doi: 10.1016/j.eurpolymj.2015.01.023

    13. [13]

      Chen D., Liu H., Kobayashi T., Yu H.. Fabrication of regularly patterned microporous films by self-organization of an amphiphilic liquid-crystalline diblock copolymer in a dry environment[J]. Macromol. Mater. Eng., 2010,295(1):26-31. doi: 10.1002/mame.v295:1

    14. [14]

      Li Y., He Y., Tong X., Wang X.. Photoinduced deformation of amphiphilic azo polymer colloidal spheres[J]. J. Am. Chem. Soc., 2005,127(8):2402-2403. doi: 10.1021/ja0424981

    15. [15]

      Lee S., Kang H. S., Park J. K.. High-resolution patterning of various large-rea, highly ordered structural motifs by directional photofluidization lithography:Sub-30-nm Line, ellipsoid, rectangle, and circle arrays[J]. Adv. Funct. Mater., 2011,21(10):1770-1778. doi: 10.1002/adfm.201001927

    16. [16]

      Lee S., Kang H. S., Park J. K.. Directional photofluidization lithography:Micro/nanostructural evolution by photofluidic motions of azobenzene materials[J]. Adv. Mater., 2012,24(16):2069-2103. doi: 10.1002/adma.201104826

    17. [17]

      Yu H., Kobayashi T.. Photoresponsive block copolymers containing azobenzenes and other chromophores[J]. Molecules, 2010,15(1):570-603.  

    18. [18]

      Xing Y., Lin S., Lin J., He X.. Synthesis, self-assembly and responsive properties of PEG-b-PDMAEMA-b-PMMAzo triblock copolymers[J]. Chinese J. Polym. Sci., 2013,31(5):833-840. doi: 10.1007/s10118-013-1283-y

    19. [19]

      Hoersch D.. Let there be light:How to use photoswitchable cross-linker to reprogram proteins[J]. Biochem. Soc. Trans., 2017,45(3):831-837. doi: 10.1042/BST20160386

    20. [20]

      Weis P., Wu S.. Light-switchable azobenzene-containing macromolecules:from UV to near infrared[J]. Macromol. Rapid Commun., 2017. doi: 10.1002/marc.201700220

    21. [21]

      Goulet-Hanssens A., Utecht M., Mutruc D., Titov E., Schwarz J., Grubert L., Bléger D., Saalfrank P., Hecht S.. Electrocatalytic Z→E isomerization of azobenzenes[J]. J. Am. Chem. Soc., 2017,139(1):335-341. doi: 10.1021/jacs.6b10822

    22. [22]

      Zhao, Y.; Ikeda, T. Smart light-responsive materials:Azobenzene-containing polymers and liquid crystals. John Wiley & Sons:2009.

    23. [23]

      Wang H., Lee K. M., White T. J., Oates W. S.. Trans-cis and trans-cis-trans microstructure evolution of azobenzene liquid-crystal polymer networks[J]. Macromol. Theory Simul., 2012,21(5):285-301. doi: 10.1002/mats.v21.5

    24. [24]

      Bin J., Oates W. S.. A unified material description for light induced deformation in azobenzene polymers[J]. Sci. Rep., 20155. doi: 10.1038/srep14654

    25. [25]

      Han M., Morino S., Ichimura K.. Factors affecting in-plane and out-of-plane photoorientation of azobenzene side chains attached to liquid crystalline polymers induced by irradiation with linearly polarized light[J]. Macromolecules, 2000,33(17):6360-6371. doi: 10.1021/ma000347m

    26. [26]

      Fang G., Maclennan J., Yi Y., Glaser M., Farrow M., Korblova E., Walba D., Furtak T., Clark N.. Athermal photofluidization of glasses[J]. Nat. Commun., 20134. doi: 10.1038/ncomms2483

    27. [27]

      Yu H.. Photoresponsive liquid crystalline block copolymers:From photonics to nanotechnology[J]. Prog. Polym. Sci., 2014,39(4):781-815. doi: 10.1016/j.progpolymsci.2013.08.005

    28. [28]

      Yu H.. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores[J]. J. Mater. Chem. C, 2014,2(17):3047-3054. doi: 10.1039/C3TC31991A

    29. [29]

      Karageorgiev P., Neher D., Schulz B., Stiller B., Pietsch U., Giersig M., Brehmer L.. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field[J]. Nat. Mater., 2005,4(9):699-703. doi: 10.1038/nmat1459

    30. [30]

      Gao F., Wang W., Li X., Li L., Lin J., Lin S.. Fabrication of ordered honeycomb amphiphobic films with extremely low fluorine content[J]. J. Colloid Interface Sci., 2016,468(15):70-77.  

    31. [31]

      Zhang A., Bai H., Li L.. Breathfigure:A nature-inspired preparation method for ordered porous films[J]. Chem. Rev., 2015,115(18):9801-9868. doi: 10.1021/acs.chemrev.5b00069

    32. [32]

      Wang W., Du C., Wang X., He X., Lin J., Li L., Lin S.. Directional photomanipulation of breath figure arrays[J]. Angew. Chem. Int. Ed., 2014,53(45):12116-12119. doi: 10.1002/anie.201407230

    33. [33]

      Wang W., Yao Y., Luo T., Chen L., Lin J., Li L., Lin S.. Deterministic reshaping of breath figure arrays by directional photomanipulation[J]. ACS Appl. Mater. Interfaces, 2017,9(4):4223-4230. doi: 10.1021/acsami.6b14024

    34. [34]

      Kong X., Wang X., Luo T., Yao Y., Li L., Lin S.. Photomanipulated architecture and patterning of azopolymer array[J]. ACS Appl. Mater. Interfaces, 2017,9(22):19345-19353. doi: 10.1021/acsami.7b04273

    35. [35]

      Lee S., Shin J., Lee Y. H., Park J. K.. Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography[J]. ACS nano, 2010,4(12):7175-7184. doi: 10.1021/nn1017507

    36. [36]

      Li C., Wang W., Wang X., Jiang H., Zhu J., Lin S.. Fabrication of porous polymer microspheres by tuning amphiphilicity of the polymer and emulsion-solvent evaporation processing[J]. Eur. Polym. J., 2015,68:409-418. doi: 10.1016/j.eurpolymj.2015.05.011

    37. [37]

      Wang Y., Lin S., Zang M., Xing Y., He X., Lin J., Chen T.. Self-assembly and photo-responsive behavior of novel ABC 2-type block copolymers containing azobenzene moieties[J]. Soft Matter, 2012,8(11):3131-3138. doi: 10.1039/c2sm07100b

    38. [38]

      Lin S., Wang Y., Cai C., Xing Y., Lin J., Chen T., He X.. Tuning self-assembly and photo-responsive behavior of azobenzene-containing triblock copolymers by combining homopolymers[J]. Nanotechnology, 2013,24(8). doi: 10.1088/0957-4484/24/8/085602

    39. [39]

      Wang J., Wang S., Zhou Y., Wang X., He Y.. Fast photoinduced large deformation of colloidal spheres from a novel 4-arm azobenzene compound[J]. ACS Appl. Mater. Interfaces, 2015,7(30):16889-16895. doi: 10.1021/acsami.5b05651

    40. [40]

      Li J., Chen L., Xu J., Wang K., Wang X., He X., Dong H., Lin S., Zhu J.. Photoguided shape deformation of azobenzene-containing polymer microparticles[J]. Langmuir, 2015,31(48):13094-13100. doi: 10.1021/acs.langmuir.5b03610

    41. [41]

      Kang H. S., Lee S., Lee S. A., Park J. K.. Multilevel micro/nano texturing by three dimensionally controlled photofluidization and its use in plasmonic applications[J]. Adv. Mater., 2013,25(38):5490-5497. doi: 10.1002/adma.201301715

    42. [42]

      Choi J., Cho W., Jung Y. S., Kang H. S., Kim H. T.. Direct fabrication of micro/nano-patterned surfaces by verticaldirectional photofluidization of azobenzene materials[J]. ACS Nano, 2017,11(2):1320-1327. doi: 10.1021/acsnano.6b05934

    43. [43]

      Sun P. Z., Liu Z., Wang W., Ma L. L., Shen D., Hu W., Lu Y., Chen L., Zheng Z. G.. Light-reconfigured wavebandselective diffraction device enabled by micro-patterning of a photoresponsive self-organized helical superstructure[J]. J. Mater. Chem. C, 2016,4(39):9325-9330. doi: 10.1039/C6TC02443B

    44. [44]

      Gao Y., Li A., Gu Z., Wang Q., Zhang Y., Wu D., Chen Y., Ming N., Ouyang S., Yu T.. Fabrication and optical properties of two-dimensional ZnO hollow half-shell arrays[J]. Appl. Phys. Lett., 2007,91(3). doi: 10.1063/1.2759268

    45. [45]

      Wiktor P., Brunner A., Kahn P., Qiu J., Magee M., Bian X., Karthikeyan K., LaBaer J.. Microreactor array device[J]. Sci. Rep., 2015,58736. doi: 10.1038/srep08736

    46. [46]

      Oscurato S. L., Borbone F., Maddalena P., Ambrosio A.. Light-driven wettability tailoring of azopolymer surfaces with reconfigured three-dimensional posts[J]. ACS Appl. Mater. Interfaces, 2017,9(35):30133-30142. doi: 10.1021/acsami.7b08025

    47. [47]

      Phillips K. R., Vogel N., Hu Y., Kolle M., Perry C. C., Aizenberg J.. Tunable anisotropy in inverse opals and emerging optical properties[J]. Chem. Mater., 2014,26(4):1622-1628. doi: 10.1021/cm403812y

    48. [48]

      Gu J., Xiao P., Chen J., Zhang J., Huang Y., Chen T.. Janus polymer/carbon nanotube hybrid membranes for oil/water separation[J]. ACS Appl. Mater. Interfaces, 2014,6(18):16204-16209. doi: 10.1021/am504326m

    49. [49]

      Pirani F., Angelini A., Frascella F., Rizzo R., Ricciardi S., Descrovi E.. Light-driven reversible shaping of individual azopolymeric micro-pillars[J]. Sci. Rep., 20166. doi: 10.1038/srep31702

    50. [50]

      Hong J. C., Park J. H., Chun C., Kim D. Y.. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals[J]. Adv. Funct. Mater., 2007,17(14):2462-2469. doi: 10.1002/(ISSN)1616-3028

    51. [51]

      Arbabi A., Horie Y., Bagheri M., Faraon A.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat. Nanotechnol., 2015,10(11):937-943. doi: 10.1038/nnano.2015.186

    52. [52]

      Zillohu A. U., Abdelaziz R., Homaeigohar S., Krasnov I., Müller M., Strunskus T., Elbahri M.. Biomimetic transferable surface for a real time control over wettability and photoerasable writing with water drop lens[J]. Sci. Rep., 20144. doi: 10.1038/srep07407

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    13. [13]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

Metrics
  • PDF Downloads(0)
  • Abstract views(808)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return