Citation: Hao Wang, Ting-Ting Dai, Bo-Lun Lu, Sheng-Li Li, Qing Lu, Vincent Mukwaya, Hong-Jing Dou. Hybrid Dextran-gadolinium Nano-suitcases as High-relaxivity MRI Contrast Agents[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 391-398. doi: 10.1007/s10118-018-2083-1 shu

Hybrid Dextran-gadolinium Nano-suitcases as High-relaxivity MRI Contrast Agents

  • Corresponding author: Hong-Jing Dou, hjdou@sjtu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 30 September 2017
    Accepted Date: 2 November 2017
    Available Online: 18 December 2017

  • Dextran-poly(glycidyl methacrylate) (Dex-PGMA) nano-suitcases were synthesized efficiently via a graft copolymerization induced self-assembly (GISA) approach. On this basis, the Dex-PGMA nano-suitcases were modified with hydrazide, and the attachment of multiple chelated Gd(ó) ions to the interior of the nano-suitcases affords nanoscale MRI contrast agents with high relaxivity values. The highly fenestrated dextran shell of the nano-suitcases assures water exchange which readily occurs between the surrounding environment and the Gd(ó) ions encapsulated within the hybrid nano-suitcases. The complexation between the hydrophilic hydrazide interior of the nano-suitcases and Gd(ó) ions results in an impressive Gd payload at 22.6 wt% in the hybrid nano-suitcases. The longitudinal relaxivity (r1) of the hybrid nano-suitcases is reported as 44.4 L/(mmol·s), which is 9-14 folds of that of commercial Gd-DTPA agents. In vivo MRI studies demonstrate that the hybrid nano-suitcases accumulated in the lymph node of the rat due to their nanoscale dimensions and displayed strong signals in vivo. The results indicated that the hybrid nano-suitcases provide a promising platform for the diagnosis of lymph node related diseases.
  • 加载中
    1. [1]

      Kim J. H., Park K., Nam H. Y., Lee S., Kim K., Kwon I. C.. Polymers for bioimaging[J]. Prog. Polym. Sci., 2007,32(8):1031-1053.  

    2. [2]

      de Leon-Rodriguez L. M., Lubag A. J. M., Malloy C. R., Martinez G. V., Gillies R. J., Sherry A. D.. Responsive MRI agents for sensing metabolism in vivo[J]. Acc. Chem. Res., 2009,42(7):948-957. doi: 10.1021/ar800237f

    3. [3]

      Darras V., Nelea M., Winnik F. M., Buschmann M. D.. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles[J]. Carbohydr. Polym., 2010,80(4):1137-1146. doi: 10.1016/j.carbpol.2010.01.035

    4. [4]

      van der Elst L., Raynaud J. S., Vives V., Santus R., Louin G., Robert P., Port M, Corot C., Muller R.. Comparative relaxivities and efficacies of gadolinium-based commercial contrast agents[J]. Proceedings of the 21st Annual Meeting of ISMRM., 2013.  

    5. [5]

      Soleimani A., Martínez F., Economopoulos V., Foster P. J., Scholl T. J., Gillies E. R.. Polymer cross-linking:a nanogel approach to enhancing the relaxivity of MRI contrast agents[J]. J. Mater. Chem. B, 2013,1(7):1027-1034. doi: 10.1039/C2TB00352J

    6. [6]

      Noh Y. W., Kong S. H., Choi D. Y., Park H. S., Yang H. K., Lee H. J., Kim H. C., Kang K. W., Sung M. H., Lim Y. T.. Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping[J]. ACS Nano, 2012,6(9):7820-7831. doi: 10.1021/nn301949y

    7. [7]

      Dai T., Zhou S., Yin C., Li S., Cao W., Liu W., Sun K., Dou H., Cao Y., Zhou G.. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping[J]. Biomaterials, 2014,35(28):8227-8235. doi: 10.1016/j.biomaterials.2014.06.012

    8. [8]

      Li Y., Beija M., Laurent S., Elst L. V., Müler R. N., Duong H. T., Lowe A. B., Davis T. P., Boyer C.. Macromolecular ligands for gadolinium MRI contrast agents[J]. Macromolecules, 2012,45(10):4196-4204. doi: 10.1021/ma300521c

    9. [9]

      Caravan P.. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents[J]. Chem. Soc. Rev., 2006,35(6):512-523. doi: 10.1039/b510982p

    10. [10]

      Casali C., Janier M., Canet E., Obadia J. F., Benderbous S., Corot C., Revel D.. Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion[J]. Acad. Radiol., 1998,5:S214-S218. doi: 10.1016/S1076-6332(98)80109-8

    11. [11]

      Jacques V., Desreux J.. New classes of MRI contrast agents[J]. Contrast Agents I, 2002:123-164.  

    12. [12]

      Major J. L., Meade T.J.. Bioresponsive, cell-penetrating, and multimeric MR contrast agents[J]. Acc. Chem. Res., 2009,42(7):893-903. doi: 10.1021/ar800245h

    13. [13]

      Liu Q., Zhu H., Qin J., Dong H., Du J.. Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery[J]. Biomacromolecules, 2014,15(5):1586-1592. doi: 10.1021/bm500438x

    14. [14]

      Liu Q., Chen S., Chen J., Du J.. An asymmetrical polymer vesicle strategy for significantly improving T1 MRI sensitivity and cancer-targeted drug delivery[J]. Macromolecules, 2015,48(3):739-749. doi: 10.1021/ma502255s

    15. [15]

      Shalgunov V., Zaytseva-Zotova D., Zintchenko A., Levada T., Shilov Y., Andreyev D., Dzhumashev D., Metelkin E., Urusova A., Demin O.. Comprehensive study of the drug delivery properties of poly(L-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice[J]. J. Control. Release, 2017.

    16. [16]

      Zhang Q. L., Wang H. Y., Ge C. C., Duncan J., He K. H., Adeosun S. O., Xi H. X., Peng H. T., Niu Q.. Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity[J]. J. Appl. Toxicol., 2017,37:1053-1064. doi: 10.1002/jat.v37.9

    17. [17]

      Wang L. Y., Huang J., Chen H. B., Wu H., Xu Y. L., Li Y. C., Yi H., Wang Y. A., Yang L., Mao H.. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J]. ACS Nano, 2017,11(5):4582-4592. doi: 10.1021/acsnano.7b00038

    18. [18]

      Taylor K. M. L., Kim J. S., Rieter W. J., An H., Lin W., Lin W. B.. Mesoporous silica nanospheres as highly efficient MRI contrast agents[J]. J. Am. Chem. Soc., 2008,130(7):2154-2155. doi: 10.1021/ja710193c

    19. [19]

      Godin B., Tasciotti E., Liu X. W., Serda R. E., Ferrari M.. Multistage nanovectors:from concept to novel imaging contrast agents and therapeutics[J]. Acc. Chem. Res., 2011,44(10):979-989. doi: 10.1021/ar200077p

    20. [20]

      Chen K. J., Wolahan S. M., Wang H., Hsu C. H., Chang H. W., Durazo A., Hwang L. P., Garcia M. A., Jiang Z. K., Wu L.. A small MRI contrast agent library of gadolinium(ó)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity[J]. Biomaterials, 2011,32(8):2160-2165. doi: 10.1016/j.biomaterials.2010.11.043

    21. [21]

      Liu Z. H., Jiao Y. P., Wang Y. F., Zhou C. R., Zhang Z. Y.. Polysaccharides-based nanoparticles as drug delivery systems[J]. Adv. Drug Deliv. Rev., 2008,60(15):1650-1662. doi: 10.1016/j.addr.2008.09.001

    22. [22]

      Hu Y., Li Y., Xu F. J.. Versatile Functionalization of polysaccharides via polymer grafts:from design to biomedical applications[J]. Acc. Chem. Res., 2017,50(2):281-292. doi: 10.1021/acs.accounts.6b00477

    23. [23]

      Mizrahy S., Peer D.. Polysaccharides as building blocks for nanotherapeutics[J]. Chem. Soc. Rev., 2012,41(7):2623-2640. doi: 10.1039/C1CS15239D

    24. [24]

      Du H. J., Shen Y. C., Liu Y. P., Han L., Zheng Y., Yan G. P., Tu Y. Y., Wu J. Y., Guo Q. Z., Zhang Y. F., Xia X. T., Lan X. L., Xia X. T.. Dextran gadolinium complex containing folate groups as a potential magnetic resonance imaging contrast agent[J]. Chinese J. Polym. Sci., 2015,33(9):1325-1333. doi: 10.1007/s10118-015-1681-4

    25. [25]

      Klaveness J.. Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging:synthesis and relaxation properties[J]. Carbohydr. Res., 1991,214(2):315-323. doi: 10.1016/0008-6215(91)80038-O

    26. [26]

      Pustylnikov S., Sagar D., Jain P., Khan Z. K.. Targeting the C-type lectins-mediated host-pathogen interactions with dextran[J]. J. Pharm. Pharm. Sci., 2014,17(3):371-392. doi: 10.18433/J3N590

    27. [27]

      Zhou S., Dou H., Zhang Z., Sun K., Jin Y., Dai T., Zhou G., Shen Z.. Fluorescent dextran-based nanogels:efficient imaging nanoprobes for adipose-derived stem cells[J]. Polym. Chem., 2013,4(15):4103-4112. doi: 10.1039/c3py00522d

    28. [28]

      Zhou S., Min X., Dou H., Sun K., Chen C. Y., Chen C. T., Zhang Z., Jin Y., Shen Z.. Facile fabrication of dextran-based fluorescent nanogels as potential glucose sensors[J]. Chem. Commun., 2013,49(82):9473-9475. doi: 10.1039/c3cc45668d

    29. [29]

      Wang H., Dai T., Zhou S., Huang X., Li S., Sun K., Zhou G., Dou H.. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems[J]. Sci. Rep., 2017,7. doi: 10.1038/srep40011

    30. [30]

      Li Q. L., Gu W. X., Gao H., Yang Y. W.. Self-assembly and applications of poly (glycidyl methacrylate)s and their derivatives[J]. Chem. Commun., 2014,50(87):13201-13215. doi: 10.1039/C4CC03036B

    31. [31]

      Sousani A., Moghadam P. N., Hasanzadeh R., Motiei H., Bagheri M.. Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer:photosensitivity and nonlinear optical properties[J]. Opt. Mater., 2016,51:232-240. doi: 10.1016/j.optmat.2015.11.006

    32. [32]

      Lauffer R. B.. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging:theory and design[J]. Chem. Rev., 1987,87(5):901-927. doi: 10.1021/cr00081a003

    33. [33]

      Zheng J. P., Liu Q. L., Zh en, M. M., Jiang F., Shu C. Y., Jin C., Yang Y., Alhadlaq H. A., Wang C. R.. Multifunctional imaging probe based on gadofulleride nanoplatform[J]. Nanoscale, 2012,4(12):3669-3672. doi: 10.1039/c2nr30836c

    34. [34]

      Borges M., Yu S., Laromaine A., Roig A., Suárez-García S., Lorenzo J., Ruiz-Molina D., Novio F.. Dual T1/T2 MRI contrast agent based on hybrid SPION@coordination polymer nanoparticles[J]. RSC Adv., 2015,5(105):86779-86783. doi: 10.1039/C5RA17661A

    35. [35]

      Park J. Y., Kim S. J., Lee G. H., Jin S., Chang Y., Bae J. E., Chae K. S.. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles:water proton relaxivity and in-vivo T1 MR image[J]. J. Korean Phys. Soc., 2015,66(8):1295-1302. doi: 10.3938/jkps.66.1295

    36. [36]

      Le W., Cui S., Chen X., Zhu H., Chen B., Cui Z.. Facile synthesis of Gd-functionalized gold nanoclusters as potential MRI/CT contrast agents[J]. Nanomaterials, 2016,6(4). doi: 10.3390/nano6040065

    37. [37]

      Zhang J., Hao G., Yao C., Hu S., Hu C., Zhang B.. Paramagnetic albumin decorated CuInS 2/ZnS QDs for CD133+ glioma bimodal MR/fluorescence targeted imaging[J]. J. Mater. Chem. B, 2016,4(23):4110-4118. doi: 10.1039/C6TB00834H

    38. [38]

      Della Rocca J., Liu D., Lin W.. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery[J]. Acc. Chem. Res., 2011,44(10):957-968. doi: 10.1021/ar200028a

    39. [39]

      Favier A., D'Agosto F., Charreyre M. T., Pichot C.. Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights[J]. Polymer, 2004,45(23):7821-7831. doi: 10.1016/j.polymer.2004.09.042

    40. [40]

      Chen Z., Yu D., Liu C., Yang X., Zhang N., Ma C., Song J., Lu Z.. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent[J]. Drug Target., 2011,19(8):657-665. doi: 10.3109/1061186X.2010.531727

    41. [41]

      Liu Q., Song L., Chen S., Gao J., Zhao P., Du J.. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery[J]. Biomaterials, 2017,114:23-33. doi: 10.1016/j.biomaterials.2016.10.027

    42. [42]

      Song S., Guo H., Jiang Z., Jin Y., Wu Y., An X., Zhang Z., Sun K., Dou H., Dou H.. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging[J]. Acta Biomater., 2015,24:266-278. doi: 10.1016/j.actbio.2015.06.025

  • 加载中
    1. [1]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    2. [2]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    3. [3]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    4. [4]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    5. [5]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    6. [6]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    7. [7]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    8. [8]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    9. [9]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    10. [10]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    11. [11]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    12. [12]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    13. [13]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    14. [14]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    15. [15]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    16. [16]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    17. [17]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    18. [18]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    19. [19]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    20. [20]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

Metrics
  • PDF Downloads(0)
  • Abstract views(830)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return