Hybrid Dextran-gadolinium Nano-suitcases as High-relaxivity MRI Contrast Agents
- Corresponding author: Hong-Jing Dou, hjdou@sjtu.edu.cn †These authors contributed equally to this work
Citation:
Hao Wang, Ting-Ting Dai, Bo-Lun Lu, Sheng-Li Li, Qing Lu, Vincent Mukwaya, Hong-Jing Dou. Hybrid Dextran-gadolinium Nano-suitcases as High-relaxivity MRI Contrast Agents[J]. Chinese Journal of Polymer Science,
;2018, 36(3): 391-398.
doi:
10.1007/s10118-018-2083-1
Kim J. H., Park K., Nam H. Y., Lee S., Kim K., Kwon I. C.. Polymers for bioimaging[J]. Prog. Polym. Sci., 2007,32(8):1031-1053.
de Leon-Rodriguez L. M., Lubag A. J. M., Malloy C. R., Martinez G. V., Gillies R. J., Sherry A. D.. Responsive MRI agents for sensing metabolism in vivo[J]. Acc. Chem. Res., 2009,42(7):948-957. doi: 10.1021/ar800237f
Darras V., Nelea M., Winnik F. M., Buschmann M. D.. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles[J]. Carbohydr. Polym., 2010,80(4):1137-1146. doi: 10.1016/j.carbpol.2010.01.035
van der Elst L., Raynaud J. S., Vives V., Santus R., Louin G., Robert P., Port M, Corot C., Muller R.. Comparative relaxivities and efficacies of gadolinium-based commercial contrast agents[J]. Proceedings of the 21st Annual Meeting of ISMRM., 2013.
Soleimani A., Martínez F., Economopoulos V., Foster P. J., Scholl T. J., Gillies E. R.. Polymer cross-linking:a nanogel approach to enhancing the relaxivity of MRI contrast agents[J]. J. Mater. Chem. B, 2013,1(7):1027-1034. doi: 10.1039/C2TB00352J
Noh Y. W., Kong S. H., Choi D. Y., Park H. S., Yang H. K., Lee H. J., Kim H. C., Kang K. W., Sung M. H., Lim Y. T.. Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping[J]. ACS Nano, 2012,6(9):7820-7831. doi: 10.1021/nn301949y
Dai T., Zhou S., Yin C., Li S., Cao W., Liu W., Sun K., Dou H., Cao Y., Zhou G.. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping[J]. Biomaterials, 2014,35(28):8227-8235. doi: 10.1016/j.biomaterials.2014.06.012
Li Y., Beija M., Laurent S., Elst L. V., Müler R. N., Duong H. T., Lowe A. B., Davis T. P., Boyer C.. Macromolecular ligands for gadolinium MRI contrast agents[J]. Macromolecules, 2012,45(10):4196-4204. doi: 10.1021/ma300521c
Caravan P.. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents[J]. Chem. Soc. Rev., 2006,35(6):512-523. doi: 10.1039/b510982p
Casali C., Janier M., Canet E., Obadia J. F., Benderbous S., Corot C., Revel D.. Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion[J]. Acad. Radiol., 1998,5:S214-S218. doi: 10.1016/S1076-6332(98)80109-8
Jacques V., Desreux J.. New classes of MRI contrast agents[J]. Contrast Agents I, 2002:123-164.
Major J. L., Meade T.J.. Bioresponsive, cell-penetrating, and multimeric MR contrast agents[J]. Acc. Chem. Res., 2009,42(7):893-903. doi: 10.1021/ar800245h
Liu Q., Zhu H., Qin J., Dong H., Du J.. Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery[J]. Biomacromolecules, 2014,15(5):1586-1592. doi: 10.1021/bm500438x
Liu Q., Chen S., Chen J., Du J.. An asymmetrical polymer vesicle strategy for significantly improving T1 MRI sensitivity and cancer-targeted drug delivery[J]. Macromolecules, 2015,48(3):739-749. doi: 10.1021/ma502255s
Shalgunov V., Zaytseva-Zotova D., Zintchenko A., Levada T., Shilov Y., Andreyev D., Dzhumashev D., Metelkin E., Urusova A., Demin O.. Comprehensive study of the drug delivery properties of poly(L-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice[J]. J. Control. Release, 2017.
Zhang Q. L., Wang H. Y., Ge C. C., Duncan J., He K. H., Adeosun S. O., Xi H. X., Peng H. T., Niu Q.. Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity[J]. J. Appl. Toxicol., 2017,37:1053-1064. doi: 10.1002/jat.v37.9
Wang L. Y., Huang J., Chen H. B., Wu H., Xu Y. L., Li Y. C., Yi H., Wang Y. A., Yang L., Mao H.. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J]. ACS Nano, 2017,11(5):4582-4592. doi: 10.1021/acsnano.7b00038
Taylor K. M. L., Kim J. S., Rieter W. J., An H., Lin W., Lin W. B.. Mesoporous silica nanospheres as highly efficient MRI contrast agents[J]. J. Am. Chem. Soc., 2008,130(7):2154-2155. doi: 10.1021/ja710193c
Godin B., Tasciotti E., Liu X. W., Serda R. E., Ferrari M.. Multistage nanovectors:from concept to novel imaging contrast agents and therapeutics[J]. Acc. Chem. Res., 2011,44(10):979-989. doi: 10.1021/ar200077p
Chen K. J., Wolahan S. M., Wang H., Hsu C. H., Chang H. W., Durazo A., Hwang L. P., Garcia M. A., Jiang Z. K., Wu L.. A small MRI contrast agent library of gadolinium(ó)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity[J]. Biomaterials, 2011,32(8):2160-2165. doi: 10.1016/j.biomaterials.2010.11.043
Liu Z. H., Jiao Y. P., Wang Y. F., Zhou C. R., Zhang Z. Y.. Polysaccharides-based nanoparticles as drug delivery systems[J]. Adv. Drug Deliv. Rev., 2008,60(15):1650-1662. doi: 10.1016/j.addr.2008.09.001
Hu Y., Li Y., Xu F. J.. Versatile Functionalization of polysaccharides via polymer grafts:from design to biomedical applications[J]. Acc. Chem. Res., 2017,50(2):281-292. doi: 10.1021/acs.accounts.6b00477
Mizrahy S., Peer D.. Polysaccharides as building blocks for nanotherapeutics[J]. Chem. Soc. Rev., 2012,41(7):2623-2640. doi: 10.1039/C1CS15239D
Du H. J., Shen Y. C., Liu Y. P., Han L., Zheng Y., Yan G. P., Tu Y. Y., Wu J. Y., Guo Q. Z., Zhang Y. F., Xia X. T., Lan X. L., Xia X. T.. Dextran gadolinium complex containing folate groups as a potential magnetic resonance imaging contrast agent[J]. Chinese J. Polym. Sci., 2015,33(9):1325-1333. doi: 10.1007/s10118-015-1681-4
Klaveness J.. Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging:synthesis and relaxation properties[J]. Carbohydr. Res., 1991,214(2):315-323. doi: 10.1016/0008-6215(91)80038-O
Pustylnikov S., Sagar D., Jain P., Khan Z. K.. Targeting the C-type lectins-mediated host-pathogen interactions with dextran[J]. J. Pharm. Pharm. Sci., 2014,17(3):371-392. doi: 10.18433/J3N590
Zhou S., Dou H., Zhang Z., Sun K., Jin Y., Dai T., Zhou G., Shen Z.. Fluorescent dextran-based nanogels:efficient imaging nanoprobes for adipose-derived stem cells[J]. Polym. Chem., 2013,4(15):4103-4112. doi: 10.1039/c3py00522d
Zhou S., Min X., Dou H., Sun K., Chen C. Y., Chen C. T., Zhang Z., Jin Y., Shen Z.. Facile fabrication of dextran-based fluorescent nanogels as potential glucose sensors[J]. Chem. Commun., 2013,49(82):9473-9475. doi: 10.1039/c3cc45668d
Wang H., Dai T., Zhou S., Huang X., Li S., Sun K., Zhou G., Dou H.. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems[J]. Sci. Rep., 2017,7. doi: 10.1038/srep40011
Li Q. L., Gu W. X., Gao H., Yang Y. W.. Self-assembly and applications of poly (glycidyl methacrylate)s and their derivatives[J]. Chem. Commun., 2014,50(87):13201-13215. doi: 10.1039/C4CC03036B
Sousani A., Moghadam P. N., Hasanzadeh R., Motiei H., Bagheri M.. Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer:photosensitivity and nonlinear optical properties[J]. Opt. Mater., 2016,51:232-240. doi: 10.1016/j.optmat.2015.11.006
Lauffer R. B.. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging:theory and design[J]. Chem. Rev., 1987,87(5):901-927. doi: 10.1021/cr00081a003
Zheng J. P., Liu Q. L., Zh en, M. M., Jiang F., Shu C. Y., Jin C., Yang Y., Alhadlaq H. A., Wang C. R.. Multifunctional imaging probe based on gadofulleride nanoplatform[J]. Nanoscale, 2012,4(12):3669-3672. doi: 10.1039/c2nr30836c
Borges M., Yu S., Laromaine A., Roig A., Suárez-García S., Lorenzo J., Ruiz-Molina D., Novio F.. Dual T1/T2 MRI contrast agent based on hybrid SPION@coordination polymer nanoparticles[J]. RSC Adv., 2015,5(105):86779-86783. doi: 10.1039/C5RA17661A
Park J. Y., Kim S. J., Lee G. H., Jin S., Chang Y., Bae J. E., Chae K. S.. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles:water proton relaxivity and in-vivo T1 MR image[J]. J. Korean Phys. Soc., 2015,66(8):1295-1302. doi: 10.3938/jkps.66.1295
Le W., Cui S., Chen X., Zhu H., Chen B., Cui Z.. Facile synthesis of Gd-functionalized gold nanoclusters as potential MRI/CT contrast agents[J]. Nanomaterials, 2016,6(4). doi: 10.3390/nano6040065
Zhang J., Hao G., Yao C., Hu S., Hu C., Zhang B.. Paramagnetic albumin decorated CuInS 2/ZnS QDs for CD133+ glioma bimodal MR/fluorescence targeted imaging[J]. J. Mater. Chem. B, 2016,4(23):4110-4118. doi: 10.1039/C6TB00834H
Della Rocca J., Liu D., Lin W.. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery[J]. Acc. Chem. Res., 2011,44(10):957-968. doi: 10.1021/ar200028a
Favier A., D'Agosto F., Charreyre M. T., Pichot C.. Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights[J]. Polymer, 2004,45(23):7821-7831. doi: 10.1016/j.polymer.2004.09.042
Chen Z., Yu D., Liu C., Yang X., Zhang N., Ma C., Song J., Lu Z.. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent[J]. Drug Target., 2011,19(8):657-665. doi: 10.3109/1061186X.2010.531727
Liu Q., Song L., Chen S., Gao J., Zhao P., Du J.. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery[J]. Biomaterials, 2017,114:23-33. doi: 10.1016/j.biomaterials.2016.10.027
Song S., Guo H., Jiang Z., Jin Y., Wu Y., An X., Zhang Z., Sun K., Dou H., Dou H.. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging[J]. Acta Biomater., 2015,24:266-278. doi: 10.1016/j.actbio.2015.06.025
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Lan Yang , Yu Li , Mou Jiang , Rui Zhou , Hengjiang Cong , Minghui Yang , Lei Zhang , Shenhui Li , Yunhuang Yang , Maili Liu , Xin Zhou , Zhong-Xing Jiang , Shizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Mianling Yang , Meehyein Kim , Peng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Xu Li , Yue Zhao , Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150