Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly
- Corresponding author: Qiang Yan, yanq@fudan.edu.cn
Citation:
Miao-Miao Xu, Ren-Jie Liu, Qiang Yan. Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly[J]. Chinese Journal of Polymer Science,
;2018, 36(3): 347-365.
doi:
10.1007/s10118-018-2080-4
Williams R. J., Smith A. M., Collins R., Hodson N., Das A. K.. Enzyme-assisted self-assembly under thermodynamic control[J]. Nat. Nanotechnol., 2009,26(3):19-24.
Zhai L.. Stimuli-responsive polymer films. Chem[J]. Soc. Rev., 2013,42(17):7148-7160. doi: 10.1039/c3cs60023h
Shim M. S., Kwon Y. J.. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications[J]. Adv. Drug Deliv. Rev., 2012,64(11):1046-1059. doi: 10.1016/j.addr.2012.01.018
Paek K., Yang H., Lee J., Park J., Kim B. J.. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide[J]. ACS Nano, 2014,8(3):2848-2056. doi: 10.1021/nn406657b
Roy D., Cambre J. N., Sumerlin B. S.. Future perspectives and recent advances in stimuli-responsive materials[J]. Prog. Polym. Sci., 2010,35(1-2):278-301. doi: 10.1016/j.progpolymsci.2009.10.008
Stuart M., Huck W., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S.. Emerging applications of stimuli-responsive polymer materials[J]. Nat. Mater., 2010,9(2):101-113. doi: 10.1038/nmat2614
Lutz J. F., Akdemir O., Hoth A.. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:is the age of poly(NIPAM) over? J[J]. Am. Chem. Soc., 2006,128(40):13046-13047. doi: 10.1021/ja065324n
Li Y. T., Lokitz B. S., Mccormick C. L.. Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation[J]. Angew. Chem. Int. Ed., 2006,45(35):5792-5795. doi: 10.1002/(ISSN)1521-3773
Ma N., Li Y., Xu H. P., Wang Z. Q., Zhang X.. Dual redox responsive assemblies formed from diselenide block copolymers[J]. J. Am. Chem. Soc., 2010,132(2):442-443. doi: 10.1021/ja908124g
Rodriguez-Hernandez J., Lecommandoux S.. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers[J]. J. Am. Chem. Soc., 2005,127(7):2026-2027. doi: 10.1021/ja043920g
Li G. Y., Shi L. Q., Ma R. J., An Y. L., Huang N.. Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers[J]. Angew. Chem. Int. Ed., 2006,45(30):4959-4962. doi: 10.1002/(ISSN)1521-3773
Du J. Z., Du X. J., Mao C. Q., Wang J.. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc., 2011,133(44):17560-17563. doi: 10.1021/ja207150n
Jiang J. Q., Tong X., Zhao Y.. A new design for light-breakable polymer micelles[J]. J. Am. Chem. Soc., 2005,127(123):8290-8291.
Fomina N., Mcfearin C., Sermsakdi M., Edigin O., Almutairi A.. UV and near-IR triggered release from polymeric nanoparticles[J]. J. Am. Chem. Soc., 2010,132(28):9540-9542. doi: 10.1021/ja102595j
Yan B., Boyer J. C., Branda N. R., Zhao Y.. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles[J]. J. Am. Chem. Soc., 2011,133(49):19714-19717. doi: 10.1021/ja209793b
Tan X. Y., Li B. B., Lu X. G., Jia F., Santori C., Menon P., Li H., Zhang B., Zhao J. J., Zhang , K .. Light-triggered, self-immolative nucleic acid-drug nanostructures[J]. J. Am. Chem. Soc., 2015,137(19):6112-6115. doi: 10.1021/jacs.5b00795
Wang X. R., Hu J. M., Liu G. H., Tian J., Wang H. J., Gong M., Liu S. Y.. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions[J]. J. Am. Chem. Soc., 2015,137(48):15262-15275. doi: 10.1021/jacs.5b10127
Torchilin V.P.. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nat. Rev. Drug Discov., 2014,13(11):813-827. doi: 10.1038/nrd4333
Liu S. Y., Billingham N. C., Armes S. P.. A schizophrenic water-soluble diblock copolymer[J]. Angew. Chem. Int. Ed., 2010,40(12):2328-2331.
Taghizadeh B., Taranejoo S., Monemian S. A., Moghaddam Z. S., Daliri K., Derakhshankhah H., Derakhshan Z.. Classification of stimuli-responsive polymers as anticancer drug delivery systems[J]. Drug Deliv., 2015,22(2):145-155. doi: 10.3109/10717544.2014.887157
Qing G. Y., Li M. M., Deng L. J., Lv Z. Y., Ding P., Sun T. L.. Smart drug release systems based on stimuli-responsive polymers[J]. Mini-Rev. Med. Chem., 2013,13(9):1369-1380. doi: 10.2174/13895575113139990062
Kuckling D., Doering A., Krahl F., Arndt K. F.. Stimuli-responsive polymer systems[J]. Polym. Sci. A Comprehensive Ref., 2012,12(8):377-413.
Yan Q., Yuan J. Y.. Synthesis and function of stimuli-responsive polymer systems[J]. Chem. J. Chinese U., 2012,33(9):1877-1885.
Cabane E., Zhang X. Y., Langowska K., Palivan C. G., Meier W.. Stimuli-responsive polymers and their applications in nanomedicine[J]. Biointerphase., 2012,7(1-4):9-36.
Boer B. D., Stalmach U., Hutten P. F. V., Victor V. K., Hadziioannou G.. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers[J]. Polymer, 2001,42(21):9097-9109. doi: 10.1016/S0032-3861(01)00388-3
Mura S., Nicolas J., Couvreur P.. Stimuli-responsive nanocarriers for drug delivery[J]. Nat. Mater., 2013,12(11):991-1003. doi: 10.1038/nmat3776
Kim I. S., Shin S. Y., Kim Y. S., Kim H. Y., Yoon H. S.. Expression of a glutathione reductase from Brassica rapasubsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli[J]. Mol. & Cells., 2009,28(5):479-487.
Niu L. Y., Chen Y. Z., Zheng H. R., Wu L. Z., Tung B. C., Yang Q. Z.. Design strategies of fluorescent probes for selective detection among biothiols[J]. Chem. Soc. Rev., 2015,46(17):6143-6160.
Mocellin S., Bronte V., Nitti D.. Nitric oxide, a double edged sword in cancer biology:searching for therapeutic opportunities[J]. Med. Res. Rev., 2007,27(3):317-352. doi: 10.1002/(ISSN)1098-1128
Gladwin M. T., Kimshapiro D. B.. Vascular biology:Nitric oxide caught in traffic[J]. Nature, 2012,491(7424):344-345. doi: 10.1038/nature11640
Hu J. M., Whittaker M. R., Duong H., Yang L., Boyer C., Davi T. P.. Biomimetic polymers responsive to a biological signaling molecule:nitric oxide triggered reversible self-assembly of single macromolecular chains into nanoparticles[J]. Angew. Chem. Int. Ed., 2014,126(3):7913-1918.
Li L., Rose P., Moore P. K.. Hydrogen sulfide and cell signaling[J]. Annu. Rev. Pharmacol., 2011,51(1):169-187. doi: 10.1146/annurev-pharmtox-010510-100505
Qiang Y., Wei S.. H2S gasotransmitter-responsive polymer vesicles[J]. Chem. Sci., 2015,7(3):2100-2105.
Kimura H.. Physiological role of hydrogen sulfide and polysulfide in the central nervous system[J]. Neurochem. Int., 2013,63(5):492-497. doi: 10.1016/j.neuint.2013.09.003
Nagy P., Pálinkás Z., Nagy A., Budai B., Tóth I., Vasas A.. Chemical aspects of hydrogen sulfide measurements in physiological samples[J]. Biochim. Biophys. Acta, 2014,1840(2):876-891. doi: 10.1016/j.bbagen.2013.05.037
Kabil O., Motl N., Banerjee R.. H2S and its role in redox signaling[J]. Biochim. Biophys. Acta, 2014,1844(8):1355-1366. doi: 10.1016/j.bbapap.2014.01.002
Zhang J., Hao X., Sang W., Yan Q.. Hydrogen polysulfide biosignal-responsive polymersomes as a nanoplatform for distinguishing intracellular reactive sulfur species (RSS)[J]. Small, 2017,13(39):1701601-1701608. doi: 10.1002/smll.v13.39
Ferrersueta G., Radi R.. Chemical biology of peroxynitrite:kinetics, diffusion, and radicals[J]. ACS Chem. Biol., 2009,4(3):161-177. doi: 10.1021/cb800279q
Szabó C., Ischiropoulos H., Radi R.. Peroxynitrite:biochemistry, pathophysiology and development of therapeutics[J]. Nat. Rev. Drug Discov., 2007,6(8):662-680. doi: 10.1038/nrd2222
Chen Z., Ren W., Wright Q. E., Ai H. W.. Genetically encoded fluorescent probe for the selective detection of peroxynitrite[J]. J. Am. Chem. Soc., 2013,135(40):14940-14943. doi: 10.1021/ja408011q
Chen Z. J., Tian Z., Kallio K., Oleson A. L., Ji A., Borchardt D., Jiang D. E., Remington S. J., Ai H. W.. The N-B interaction through a water bridge:understanding the chemoselectivity of a fluorescent protein based probe for peroxynitrite[J]. J. Am. Chem. Soc., 2016,138(14):4900-4907. doi: 10.1021/jacs.6b01285
Peng T., Wong N. K., Chen X. M., Chan Y. K., Ho D. H., Sun Z. N., Hu J. J., Shen J. G., El-Nezami H., Yang D.. Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues[J]. J. Am. Chem. Soc., 2014,136(33):11728-11734. doi: 10.1021/ja504624q
Peng T., Yang D.. HKGreen-3:a rhodol-based fluorescent probe for peroxynitrite[J]. Org. Lett., 2010,12(21):4932-4935. doi: 10.1021/ol102182j
Yang D., Wang H. L., Sun Z. N., Chung N. W., Shen J. G.. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells[J]. J. Am. Chem. Soc., 2006,128(18):6004-6005. doi: 10.1021/ja0603756
Zhang J., Hu J., Sang W., Wang J. B., Yan Q.. Peroxynitrite (ONOO-) redox signaling molecule-responsive polymersomes[J]. ACS Macro Lett., 2016,5(8):919-924. doi: 10.1021/acsmacrolett.6b00474
Mustafa A. K., Gadalla M. M., Snyder S. H.. Signaling by gasotransmitters[J]. Sci. Signal., 2009,2(68). doi: 10.1126/scisignal.268re2
Piantadosi C.A.. Carbon monoxide, reactive oxygen signaling, and oxidative stress[J]. Free Radical Bio. & Med., 2008,45(5):562-569.
Motterlini R., Otterbein L. E.. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228
Morse D., Sethi J.. Carbon monoxide and human disease[J]. Antioxidants & Redox Sign., 2002,4(2):331-338.
Xu M. M., Liu L. X., Hu J., Yan Q.. CO-signaling molecule-responsive nanoparticles formed from palladiumcontaining block copolymers[J]. ACS Macro Lett., 2017,6(4):458-462. doi: 10.1021/acsmacrolett.7b00042
Biswas S., Kinbara K., Niwa T., Taguchi H., Ishii N., Watanabe S., Miyata K., Kataoka K., Aida T.. Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP[J]. Nat. Chem., 2013,5(7):613-620. doi: 10.1038/nchem.1681
Okuro K., Sasaki M., Aida T.. Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes[J]. J. Am. Chem. Soc., 2016,138(17):5527-5530. doi: 10.1021/jacs.6b02664
Mo R., Jiang T., Disanto R., Tai W., Gu Z.. ATP-triggered anticancer drug delivery[J]. Nat. Commun., 2014,5(1):3364-3373.
Yu G. C., Zhou J., Shen J., Tang G. P., Huang F. H.. Cationic pillar[J]. Chem. Sci., 2016,7(7):4073-4078. doi: 10.1039/C6SC00531D
Yan Q., Zhao Y.. ATP-triggered biomimetic deformations of bioinspired receptor-containing polymer assemblies[J]. Chem. Sci., 2015,6(7):4343-4349. doi: 10.1039/C5SC00965K
Guo Z. Q., Song N. R., Moon J. H., Kim M., Jun E. J., Choi J. Y., Lee J. Y., Bielawski C. W., Sessler J. L., Yoon J. Y.. A Benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2[J]. J. Am. Chem. Soc., 2012,134(43):17846-17849. doi: 10.1021/ja306891c
Wang H., Chen D. D., Zhang Y. H., Liu P., Shi J. B., Feng X., Tong B., Dong Y. P.. A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels[J]. J. Mater. Chem. C, 2015,3(29):7621-7626. doi: 10.1039/C5TC01280E
Dansby-Sparks R. N., Jin J., Mechery S. J., Sampathkumaran U., Owen T. W., Yu B. D., Goswami K., Hong K. L., Grant G., Xue Z. L.. Fluorescent dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations[J]. Anal. Chem., 2010,82(2):593-600. doi: 10.1021/ac901890r
Gutknecht J., Bisson M. A., Tosteson F. C.. Diffusion of carbon dioxide through lipid bilayer membranes:effects of carbonic anhydrase, bicarbonate and unstirred layers[J]. J. Gen. Physiol., 1977,69(6):779-794.
Tour J. M., Kittrell C., Colvin V. L.. Green carbon as a bridge to renewable energy[J]. Nat. Mater., 2010,9(11):871-874. doi: 10.1038/nmat2887
Yan Q., Zhou R., Fu C. K., Zhang. H. J.; Yin Y. W., Yin. Y. W., Yuan J. Y.. CO2-responsive polymeric vesicles that breathe[J]. Angew. Chem. Int. Ed., 2011,50(21):4923-4927. doi: 10.1002/anie.v50.21
Yan Q., Zhao Y.. CO2-stimulated diversiform deformations of polymer assemblies[J]. J. Am. Chem. Soc., 2013,135(44):16300-16303. doi: 10.1021/ja408655n
Guo Z. R., Feng Y. J., Wang Y., Wang J. Y., Wu Y. F., Zhang Y. M.. A novel smart polymer responsive to CO2[J]. Chem. Commun., 2011,47(33):9348-9350. doi: 10.1039/c1cc12388b
Liu B. W., Zhou H. J., Zhou S. T., Zhang H. J., Feng A. C., Jian C. M., Hu J., Gao W. P., Yuan J. Y.. Synthesis and self-assembly of CO2-temperature dual stimuli-responsive triblock copolymers[J]. Macromolecules, 2014,47(9):2938-2946. doi: 10.1021/ma5001404
Choi J. Y., Jin YK., Moon H. J., Park M. H., Jeong B. M.. CO2-and O2-sensitive fluorophenyl end-capped poly(ethylene glycol)[J]. Macromol. Rapid Commun., 2014,35(1):66-70. doi: 10.1002/marc.201300700
Zhang Q., Zhu S. P.. Oxygen and carbon dioxide dual responsive nanoaggregates of fluoro-and amino-containing copolymer[J]. ACS Macro Lett., 2014,3(8):743-746. doi: 10.1021/mz500377x
Xu X. D., Lin B. B., Feng J., Wang Y., Cheng S. X., Zhang X. Z., Zhuo R. X.. Biological glucose metabolism regulated peptide self-assembly as a simple visual biosensor for glucose detection[J]. Macromol. Rapid Commun., 2012,33(5):426-431. doi: 10.1002/marc.201100689
Ryu J. H., Jiwpanich S., Chacko R., Bickerton S.. Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities[J]. J. Am. Chem. Soc., 2010,132(24):8246-8247. doi: 10.1021/ja102316a
Ja-Hyoung R., Chacko R. T., Siriporn J., Bickerton S., Babu R. P.. Thayumanavan. S. Self-cross-linked polymer nanogels:a versatile nanoscopic drug delivery platform[J]. J. Am. Chem. Soc., 2010,132(48):17227-17235. doi: 10.1021/ja1069932
Jiwpanich S., Ryu J. H., Bickerton S.. Thayumanavan. S. Non-covalent encapsulation stabilities in supramolecular nanoassemblies[J]. J. Am. Chem. Soc., 2010,132(31):10683-10685. doi: 10.1021/ja105059g
Zhao W. R., Zhang H. T., He Q. J., Li Y. S., Gu J. L., Li L., Li H., Shi J. L.. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles[J]. Chem. Commun., 2011,47(33):9459-9461. doi: 10.1039/c1cc12740c
Guo Q. Q., Zhang T. Q., An J. X., Wu Z. M., Zhao Y., Dai X. M., Zhang X. G., Li C. X.. Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles[J]. Biomacromolecules, 2015,16(10):3345-3356. doi: 10.1021/acs.biomac.5b01020
Kim H., Kang Y. J., Kang S., Kim K. T.. Monosaccharideresponsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH[J]. J. Am. Chem. Soc., 2012,134(9):4030-4033. doi: 10.1021/ja211728x
Wang H., Wang X., Winnik M. A., Manners I.. Redox-mediated synthesis and encapsulation of inorganic nanoparticles in shell-cross-linked cylindrical polyferrocenylsilane block copolymer micelles[J]. J. Am. Chem. Soc., 2008,130(39):12921-12930. doi: 10.1021/ja8028558
Broaders K. E., Grandhe S., Fréchet J. M.. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics[J]. J. Am. Chem. Soc., 2011,133(4):756-758. doi: 10.1021/ja110468v
Cheng R., Feng F., Meng F. H., Deng C., Jan F. J., Zhong Z. Y.. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery[J]. J. Control. Release, 2011,152(1):2-12. doi: 10.1016/j.jconrel.2011.01.030
Kuppusamy P., Li H., Ilangovan G., Cardounel A. J., Zweier J. L., Yamada K., Krishna M. C., Mitchell J. B.. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels[J]. Cancer Res., 2002,62(1):307-312.
Chen W., Zhong P., Meng F. H., Cheng R., Deng C., Jan F. J., Zhong Z. Y.. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release[J]. J. Control. Release, 2013,169(3):171-179. doi: 10.1016/j.jconrel.2013.01.001
Ma N., Li Y., Xu H. P., Wang Z. Q., Zhang X.. Dual redox responsive assemblies formed from diselenide block copolymers[J]. J. Am. Chem. Soc., 2010,132(2):442-443. doi: 10.1021/ja908124g
Han P., Li S. C., Cao W., Li Y., Sun Z. W., Wang Z. Q., Xu H. P.. Red light responsive diselenide-containing block copolymer micelles[J]. J. Mater. Chem., B2013,1(6):740-743. doi: 10.1039/C2TB00186A
Amir R. J., Zhong S., Pochan D. J., Hawker C. J.. Enzymatically triggered self-assembly of block copolymers[J]. J. Am. Chem. Soc., 2009,131(39):13949-13951. doi: 10.1021/ja9060917
Meers P.. Enzyme-activated targeting of liposomes[J]. Adv. Drug Deliv. Rev., 2001,53(3):265-272. doi: 10.1016/S0169-409X(01)00205-8
Rao J. Y., Khan A.. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif[J]. J. Am. Chem. Soc., 2013,135(38):14056-14059. doi: 10.1021/ja407514z
Harnoy A. J., Rosenbaum I., Tirosh E., Ebenstein Y., Shaharabani R., Beck R., Amir R. J.. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers[J]. J. Am. Chem. Soc., 2014,136(21):7531-7534. doi: 10.1021/ja413036q
Harnoy A. J., Buzhor M., Tirosh E., Shaharabani R., Beck R., Amir R. J.. Modular synthetic approach for adjusting the disassembly rates of enzyme-responsive polymeric micelles[J]. Biomacromolecules, 2017,18(4):1218-1228. doi: 10.1021/acs.biomac.6b01906
Saxena S., Jayakannan M.. Enzyme and pH dual responsive amino acid based biodegradable polymer nanocarrier for multidrug delivery to cancer cells[J]. J. Polym. Sci., Part A:Polym. Chem., 2016,54(20):3279-3293. doi: 10.1002/pola.v54.20
Wang C., Chen Q. S., Wang Z. Q., Zhang X.. An enzyme-responsive polymeric superamphiphile[J]. Angew. Chem. Int. Ed., 2010,49(46):8612-8615. doi: 10.1002/anie.201004253
Li Y. M., Liu G. H., Wang X. R., Wu J. M., Liu S. Y.. Enzyme-responsive polymeric vesicles for bacterial-strainselective delivery of antimicrobial agents[J]. Angew. Chem. Int. Ed., 2016,128(5):1792-1796. doi: 10.1002/ange.201509401
Li Y. M., Liu S. Y., Li Y. M., Liu S. Y.. Enzyme-triggered transition from polymeric vesicles to core cross-linked micelles for selective release of antimicrobial agents[J]. Acta Polymerica Sinica (in Chinese), 2017(7):1178-1190.
Seeman N. C.. DNA in a material world[J]. Nature, 2003,421(6921):427-431. doi: 10.1038/nature01406
Aldaye F. A., Palmer A. L., Sleiman H. F.. Assembling materials with DNA as the guide[J]. Science, 2008,321(5897):1795-1799. doi: 10.1126/science.1154533
Mclaughlin C. K., Hamblin G. D., Sleiman H. F.. Supramolecular DNA assembly[J]. Chem. Soc. Rev., 2011,40(12):5647-5656. doi: 10.1039/c1cs15253j
Edwardson T. G. W., Carneiro K. M. M., Mclaughlin C. K., Serpell C. J., Sleiman H. F.. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly[J]. Nat. Chem., 2013,5(10):868-875. doi: 10.1038/nchem.1745
Bujold K. E., Fakhoury J., Edwardson T. G. W., Carneiro K. M. M., Briard J. N., Godin A. G., Amrein L., Hamblin G. D., Panasci L. C., Wiseman P. W., Sleiman H.. Sequenceresponsive unzipping DNA cubes with tunable cellular uptake profiles[J]. Chem. Sci., 2014,5(6):2449-2455. doi: 10.1039/C4SC00646A
Peterson G. I., Larsen M. B., Boydston A. J., Boydston A. J.. Controlled depolymerization:stimuli-responsive self-immolative polymers[J]. Macromolecules, 2012,45(18):7317-7328. doi: 10.1021/ma300817v
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Shuaige Bai , Shuai Huang , Ting Luo , Bin Feng , Yanpeng Fang , Feiyi Chu , Jie Dong , Wenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Chunlei Dai , Liying Wang , Xinru You , Yi Zhao , Zhong Cao , Jun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869
Yuqing Liu , Shiling Zhang , Kai Jiang , Shiyue Ding , Limei Xu , Yingqi Liu , Ting Wang , Fenfen Zheng , Weiwei Xiong , Jun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
Jialiang XU , Jiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
Zikang Hu , Hengjie Zhang , Zhengqiu Li , Tianbao Zhao , Zhipeng Gu , Qijuan Yuan , Baoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527
Yanye Fan , Jingjing Chen , Bichun Chen , Jinyu Bai , Bowen Yang , Feng Liang , Lijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075