Citation: Miao-Miao Xu, Ren-Jie Liu, Qiang Yan. Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 347-365. doi: 10.1007/s10118-018-2080-4 shu

Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly

  • Corresponding author: Qiang Yan, yanq@fudan.edu.cn
  • Received Date: 1 October 2017
    Accepted Date: 26 October 2017
    Available Online: 27 December 2017

  • Biological stimuli-responsive polymers have increasingly attracted attention in recent years because it can satisfy many requirements of applications related with human body while traditional systems do not meet. Due to the importance of this burgeoning field, great efforts have been devoted and, up to now, polymer chemists have made a remarkable success in this prospective research topic. In this review, we systematically generalize the present state of biological stimuli-responsive polymer systems. We highlight several representative examples to specify the current problems and look ahead a clear sense of direction in this area.
  • 加载中
    1. [1]

      Williams R. J., Smith A. M., Collins R., Hodson N., Das A. K.. Enzyme-assisted self-assembly under thermodynamic control[J]. Nat. Nanotechnol., 2009,26(3):19-24.  

    2. [2]

      Zhai L.. Stimuli-responsive polymer films. Chem[J]. Soc. Rev., 2013,42(17):7148-7160. doi: 10.1039/c3cs60023h

    3. [3]

      Shim M. S., Kwon Y. J.. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications[J]. Adv. Drug Deliv. Rev., 2012,64(11):1046-1059. doi: 10.1016/j.addr.2012.01.018

    4. [4]

      Paek K., Yang H., Lee J., Park J., Kim B. J.. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide[J]. ACS Nano, 2014,8(3):2848-2056. doi: 10.1021/nn406657b

    5. [5]

      Roy D., Cambre J. N., Sumerlin B. S.. Future perspectives and recent advances in stimuli-responsive materials[J]. Prog. Polym. Sci., 2010,35(1-2):278-301. doi: 10.1016/j.progpolymsci.2009.10.008

    6. [6]

      Stuart M., Huck W., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S.. Emerging applications of stimuli-responsive polymer materials[J]. Nat. Mater., 2010,9(2):101-113. doi: 10.1038/nmat2614

    7. [7]

      Lutz J. F., Akdemir O., Hoth A.. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:is the age of poly(NIPAM) over? J[J]. Am. Chem. Soc., 2006,128(40):13046-13047. doi: 10.1021/ja065324n

    8. [8]

      Li Y. T., Lokitz B. S., Mccormick C. L.. Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation[J]. Angew. Chem. Int. Ed., 2006,45(35):5792-5795. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Ma N., Li Y., Xu H. P., Wang Z. Q., Zhang X.. Dual redox responsive assemblies formed from diselenide block copolymers[J]. J. Am. Chem. Soc., 2010,132(2):442-443. doi: 10.1021/ja908124g

    10. [10]

      Rodriguez-Hernandez J., Lecommandoux S.. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers[J]. J. Am. Chem. Soc., 2005,127(7):2026-2027. doi: 10.1021/ja043920g

    11. [11]

      Li G. Y., Shi L. Q., Ma R. J., An Y. L., Huang N.. Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers[J]. Angew. Chem. Int. Ed., 2006,45(30):4959-4962. doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Du J. Z., Du X. J., Mao C. Q., Wang J.. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc., 2011,133(44):17560-17563. doi: 10.1021/ja207150n

    13. [13]

      Jiang J. Q., Tong X., Zhao Y.. A new design for light-breakable polymer micelles[J]. J. Am. Chem. Soc., 2005,127(123):8290-8291.  

    14. [14]

      Fomina N., Mcfearin C., Sermsakdi M., Edigin O., Almutairi A.. UV and near-IR triggered release from polymeric nanoparticles[J]. J. Am. Chem. Soc., 2010,132(28):9540-9542. doi: 10.1021/ja102595j

    15. [15]

      Yan B., Boyer J. C., Branda N. R., Zhao Y.. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles[J]. J. Am. Chem. Soc., 2011,133(49):19714-19717. doi: 10.1021/ja209793b

    16. [16]

      Tan X. Y., Li B. B., Lu X. G., Jia F., Santori C., Menon P., Li H., Zhang B., Zhao J. J., Zhang , K .. Light-triggered, self-immolative nucleic acid-drug nanostructures[J]. J. Am. Chem. Soc., 2015,137(19):6112-6115. doi: 10.1021/jacs.5b00795

    17. [17]

      Wang X. R., Hu J. M., Liu G. H., Tian J., Wang H. J., Gong M., Liu S. Y.. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions[J]. J. Am. Chem. Soc., 2015,137(48):15262-15275. doi: 10.1021/jacs.5b10127

    18. [18]

      Torchilin V.P.. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nat. Rev. Drug Discov., 2014,13(11):813-827. doi: 10.1038/nrd4333

    19. [19]

      Liu S. Y., Billingham N. C., Armes S. P.. A schizophrenic water-soluble diblock copolymer[J]. Angew. Chem. Int. Ed., 2010,40(12):2328-2331.  

    20. [20]

      Taghizadeh B., Taranejoo S., Monemian S. A., Moghaddam Z. S., Daliri K., Derakhshankhah H., Derakhshan Z.. Classification of stimuli-responsive polymers as anticancer drug delivery systems[J]. Drug Deliv., 2015,22(2):145-155. doi: 10.3109/10717544.2014.887157

    21. [21]

      Qing G. Y., Li M. M., Deng L. J., Lv Z. Y., Ding P., Sun T. L.. Smart drug release systems based on stimuli-responsive polymers[J]. Mini-Rev. Med. Chem., 2013,13(9):1369-1380. doi: 10.2174/13895575113139990062

    22. [22]

      Kuckling D., Doering A., Krahl F., Arndt K. F.. Stimuli-responsive polymer systems[J]. Polym. Sci. A Comprehensive Ref., 2012,12(8):377-413.  

    23. [23]

      Yan Q., Yuan J. Y.. Synthesis and function of stimuli-responsive polymer systems[J]. Chem. J. Chinese U., 2012,33(9):1877-1885.  

    24. [24]

      Cabane E., Zhang X. Y., Langowska K., Palivan C. G., Meier W.. Stimuli-responsive polymers and their applications in nanomedicine[J]. Biointerphase., 2012,7(1-4):9-36.  

    25. [25]

      Boer B. D., Stalmach U., Hutten P. F. V., Victor V. K., Hadziioannou G.. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers[J]. Polymer, 2001,42(21):9097-9109. doi: 10.1016/S0032-3861(01)00388-3

    26. [26]

      Mura S., Nicolas J., Couvreur P.. Stimuli-responsive nanocarriers for drug delivery[J]. Nat. Mater., 2013,12(11):991-1003. doi: 10.1038/nmat3776

    27. [27]

      Kim I. S., Shin S. Y., Kim Y. S., Kim H. Y., Yoon H. S.. Expression of a glutathione reductase from Brassica rapasubsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli[J]. Mol. & Cells., 2009,28(5):479-487.  

    28. [28]

      Niu L. Y., Chen Y. Z., Zheng H. R., Wu L. Z., Tung B. C., Yang Q. Z.. Design strategies of fluorescent probes for selective detection among biothiols[J]. Chem. Soc. Rev., 2015,46(17):6143-6160.  

    29. [29]

      Mocellin S., Bronte V., Nitti D.. Nitric oxide, a double edged sword in cancer biology:searching for therapeutic opportunities[J]. Med. Res. Rev., 2007,27(3):317-352. doi: 10.1002/(ISSN)1098-1128

    30. [30]

      Gladwin M. T., Kimshapiro D. B.. Vascular biology:Nitric oxide caught in traffic[J]. Nature, 2012,491(7424):344-345. doi: 10.1038/nature11640

    31. [31]

      Hu J. M., Whittaker M. R., Duong H., Yang L., Boyer C., Davi T. P.. Biomimetic polymers responsive to a biological signaling molecule:nitric oxide triggered reversible self-assembly of single macromolecular chains into nanoparticles[J]. Angew. Chem. Int. Ed., 2014,126(3):7913-1918.  

    32. [32]

      Li L., Rose P., Moore P. K.. Hydrogen sulfide and cell signaling[J]. Annu. Rev. Pharmacol., 2011,51(1):169-187. doi: 10.1146/annurev-pharmtox-010510-100505

    33. [33]

      Qiang Y., Wei S.. H2S gasotransmitter-responsive polymer vesicles[J]. Chem. Sci., 2015,7(3):2100-2105.  

    34. [34]

      Kimura H.. Physiological role of hydrogen sulfide and polysulfide in the central nervous system[J]. Neurochem. Int., 2013,63(5):492-497. doi: 10.1016/j.neuint.2013.09.003

    35. [35]

      Nagy P., Pálinkás Z., Nagy A., Budai B., Tóth I., Vasas A.. Chemical aspects of hydrogen sulfide measurements in physiological samples[J]. Biochim. Biophys. Acta, 2014,1840(2):876-891. doi: 10.1016/j.bbagen.2013.05.037

    36. [36]

      Kabil O., Motl N., Banerjee R.. H2S and its role in redox signaling[J]. Biochim. Biophys. Acta, 2014,1844(8):1355-1366. doi: 10.1016/j.bbapap.2014.01.002

    37. [37]

      Zhang J., Hao X., Sang W., Yan Q.. Hydrogen polysulfide biosignal-responsive polymersomes as a nanoplatform for distinguishing intracellular reactive sulfur species (RSS)[J]. Small, 2017,13(39):1701601-1701608. doi: 10.1002/smll.v13.39

    38. [38]

      Ferrersueta G., Radi R.. Chemical biology of peroxynitrite:kinetics, diffusion, and radicals[J]. ACS Chem. Biol., 2009,4(3):161-177. doi: 10.1021/cb800279q

    39. [39]

      Szabó C., Ischiropoulos H., Radi R.. Peroxynitrite:biochemistry, pathophysiology and development of therapeutics[J]. Nat. Rev. Drug Discov., 2007,6(8):662-680. doi: 10.1038/nrd2222

    40. [40]

      Chen Z., Ren W., Wright Q. E., Ai H. W.. Genetically encoded fluorescent probe for the selective detection of peroxynitrite[J]. J. Am. Chem. Soc., 2013,135(40):14940-14943. doi: 10.1021/ja408011q

    41. [41]

      Chen Z. J., Tian Z., Kallio K., Oleson A. L., Ji A., Borchardt D., Jiang D. E., Remington S. J., Ai H. W.. The N-B interaction through a water bridge:understanding the chemoselectivity of a fluorescent protein based probe for peroxynitrite[J]. J. Am. Chem. Soc., 2016,138(14):4900-4907. doi: 10.1021/jacs.6b01285

    42. [42]

      Peng T., Wong N. K., Chen X. M., Chan Y. K., Ho D. H., Sun Z. N., Hu J. J., Shen J. G., El-Nezami H., Yang D.. Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues[J]. J. Am. Chem. Soc., 2014,136(33):11728-11734. doi: 10.1021/ja504624q

    43. [43]

      Peng T., Yang D.. HKGreen-3:a rhodol-based fluorescent probe for peroxynitrite[J]. Org. Lett., 2010,12(21):4932-4935. doi: 10.1021/ol102182j

    44. [44]

      Yang D., Wang H. L., Sun Z. N., Chung N. W., Shen J. G.. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells[J]. J. Am. Chem. Soc., 2006,128(18):6004-6005. doi: 10.1021/ja0603756

    45. [45]

      Zhang J., Hu J., Sang W., Wang J. B., Yan Q.. Peroxynitrite (ONOO-) redox signaling molecule-responsive polymersomes[J]. ACS Macro Lett., 2016,5(8):919-924. doi: 10.1021/acsmacrolett.6b00474

    46. [46]

      Mustafa A. K., Gadalla M. M., Snyder S. H.. Signaling by gasotransmitters[J]. Sci. Signal., 2009,2(68). doi: 10.1126/scisignal.268re2

    47. [47]

      Piantadosi C.A.. Carbon monoxide, reactive oxygen signaling, and oxidative stress[J]. Free Radical Bio. & Med., 2008,45(5):562-569.  

    48. [48]

      Motterlini R., Otterbein L. E.. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228

    49. [49]

      Morse D., Sethi J.. Carbon monoxide and human disease[J]. Antioxidants & Redox Sign., 2002,4(2):331-338.  

    50. [50]

      Xu M. M., Liu L. X., Hu J., Yan Q.. CO-signaling molecule-responsive nanoparticles formed from palladiumcontaining block copolymers[J]. ACS Macro Lett., 2017,6(4):458-462. doi: 10.1021/acsmacrolett.7b00042

    51. [51]

      Biswas S., Kinbara K., Niwa T., Taguchi H., Ishii N., Watanabe S., Miyata K., Kataoka K., Aida T.. Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP[J]. Nat. Chem., 2013,5(7):613-620. doi: 10.1038/nchem.1681

    52. [52]

      Okuro K., Sasaki M., Aida T.. Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes[J]. J. Am. Chem. Soc., 2016,138(17):5527-5530. doi: 10.1021/jacs.6b02664

    53. [53]

      Mo R., Jiang T., Disanto R., Tai W., Gu Z.. ATP-triggered anticancer drug delivery[J]. Nat. Commun., 2014,5(1):3364-3373.  

    54. [54]

      Yu G. C., Zhou J., Shen J., Tang G. P., Huang F. H.. Cationic pillar[J]. Chem. Sci., 2016,7(7):4073-4078. doi: 10.1039/C6SC00531D

    55. [55]

      Yan Q., Zhao Y.. ATP-triggered biomimetic deformations of bioinspired receptor-containing polymer assemblies[J]. Chem. Sci., 2015,6(7):4343-4349. doi: 10.1039/C5SC00965K

    56. [56]

      Guo Z. Q., Song N. R., Moon J. H., Kim M., Jun E. J., Choi J. Y., Lee J. Y., Bielawski C. W., Sessler J. L., Yoon J. Y.. A Benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2[J]. J. Am. Chem. Soc., 2012,134(43):17846-17849. doi: 10.1021/ja306891c

    57. [57]

      Wang H., Chen D. D., Zhang Y. H., Liu P., Shi J. B., Feng X., Tong B., Dong Y. P.. A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels[J]. J. Mater. Chem. C, 2015,3(29):7621-7626. doi: 10.1039/C5TC01280E

    58. [58]

      Dansby-Sparks R. N., Jin J., Mechery S. J., Sampathkumaran U., Owen T. W., Yu B. D., Goswami K., Hong K. L., Grant G., Xue Z. L.. Fluorescent dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations[J]. Anal. Chem., 2010,82(2):593-600. doi: 10.1021/ac901890r

    59. [59]

      Gutknecht J., Bisson M. A., Tosteson F. C.. Diffusion of carbon dioxide through lipid bilayer membranes:effects of carbonic anhydrase, bicarbonate and unstirred layers[J]. J. Gen. Physiol., 1977,69(6):779-794.  

    60. [60]

      Tour J. M., Kittrell C., Colvin V. L.. Green carbon as a bridge to renewable energy[J]. Nat. Mater., 2010,9(11):871-874. doi: 10.1038/nmat2887

    61. [61]

      Yan Q., Zhou R., Fu C. K., Zhang. H. J.; Yin Y. W., Yin. Y. W., Yuan J. Y.. CO2-responsive polymeric vesicles that breathe[J]. Angew. Chem. Int. Ed., 2011,50(21):4923-4927. doi: 10.1002/anie.v50.21

    62. [62]

      Yan Q., Zhao Y.. CO2-stimulated diversiform deformations of polymer assemblies[J]. J. Am. Chem. Soc., 2013,135(44):16300-16303. doi: 10.1021/ja408655n

    63. [63]

      Guo Z. R., Feng Y. J., Wang Y., Wang J. Y., Wu Y. F., Zhang Y. M.. A novel smart polymer responsive to CO2[J]. Chem. Commun., 2011,47(33):9348-9350. doi: 10.1039/c1cc12388b

    64. [64]

      Liu B. W., Zhou H. J., Zhou S. T., Zhang H. J., Feng A. C., Jian C. M., Hu J., Gao W. P., Yuan J. Y.. Synthesis and self-assembly of CO2-temperature dual stimuli-responsive triblock copolymers[J]. Macromolecules, 2014,47(9):2938-2946. doi: 10.1021/ma5001404

    65. [65]

      Choi J. Y., Jin YK., Moon H. J., Park M. H., Jeong B. M.. CO2-and O2-sensitive fluorophenyl end-capped poly(ethylene glycol)[J]. Macromol. Rapid Commun., 2014,35(1):66-70. doi: 10.1002/marc.201300700

    66. [66]

      Zhang Q., Zhu S. P.. Oxygen and carbon dioxide dual responsive nanoaggregates of fluoro-and amino-containing copolymer[J]. ACS Macro Lett., 2014,3(8):743-746. doi: 10.1021/mz500377x

    67. [67]

      Xu X. D., Lin B. B., Feng J., Wang Y., Cheng S. X., Zhang X. Z., Zhuo R. X.. Biological glucose metabolism regulated peptide self-assembly as a simple visual biosensor for glucose detection[J]. Macromol. Rapid Commun., 2012,33(5):426-431. doi: 10.1002/marc.201100689

    68. [68]

      Ryu J. H., Jiwpanich S., Chacko R., Bickerton S.. Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities[J]. J. Am. Chem. Soc., 2010,132(24):8246-8247. doi: 10.1021/ja102316a

    69. [69]

      Ja-Hyoung R., Chacko R. T., Siriporn J., Bickerton S., Babu R. P.. Thayumanavan. S. Self-cross-linked polymer nanogels:a versatile nanoscopic drug delivery platform[J]. J. Am. Chem. Soc., 2010,132(48):17227-17235. doi: 10.1021/ja1069932

    70. [70]

      Jiwpanich S., Ryu J. H., Bickerton S.. Thayumanavan. S. Non-covalent encapsulation stabilities in supramolecular nanoassemblies[J]. J. Am. Chem. Soc., 2010,132(31):10683-10685. doi: 10.1021/ja105059g

    71. [71]

      Zhao W. R., Zhang H. T., He Q. J., Li Y. S., Gu J. L., Li L., Li H., Shi J. L.. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles[J]. Chem. Commun., 2011,47(33):9459-9461. doi: 10.1039/c1cc12740c

    72. [72]

      Guo Q. Q., Zhang T. Q., An J. X., Wu Z. M., Zhao Y., Dai X. M., Zhang X. G., Li C. X.. Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles[J]. Biomacromolecules, 2015,16(10):3345-3356. doi: 10.1021/acs.biomac.5b01020

    73. [73]

      Kim H., Kang Y. J., Kang S., Kim K. T.. Monosaccharideresponsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH[J]. J. Am. Chem. Soc., 2012,134(9):4030-4033. doi: 10.1021/ja211728x

    74. [74]

      Wang H., Wang X., Winnik M. A., Manners I.. Redox-mediated synthesis and encapsulation of inorganic nanoparticles in shell-cross-linked cylindrical polyferrocenylsilane block copolymer micelles[J]. J. Am. Chem. Soc., 2008,130(39):12921-12930. doi: 10.1021/ja8028558

    75. [75]

      Broaders K. E., Grandhe S., Fréchet J. M.. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics[J]. J. Am. Chem. Soc., 2011,133(4):756-758. doi: 10.1021/ja110468v

    76. [76]

      Cheng R., Feng F., Meng F. H., Deng C., Jan F. J., Zhong Z. Y.. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery[J]. J. Control. Release, 2011,152(1):2-12. doi: 10.1016/j.jconrel.2011.01.030

    77. [77]

      Kuppusamy P., Li H., Ilangovan G., Cardounel A. J., Zweier J. L., Yamada K., Krishna M. C., Mitchell J. B.. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels[J]. Cancer Res., 2002,62(1):307-312.  

    78. [78]

      Chen W., Zhong P., Meng F. H., Cheng R., Deng C., Jan F. J., Zhong Z. Y.. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release[J]. J. Control. Release, 2013,169(3):171-179. doi: 10.1016/j.jconrel.2013.01.001

    79. [79]

      Ma N., Li Y., Xu H. P., Wang Z. Q., Zhang X.. Dual redox responsive assemblies formed from diselenide block copolymers[J]. J. Am. Chem. Soc., 2010,132(2):442-443. doi: 10.1021/ja908124g

    80. [80]

      Han P., Li S. C., Cao W., Li Y., Sun Z. W., Wang Z. Q., Xu H. P.. Red light responsive diselenide-containing block copolymer micelles[J]. J. Mater. Chem., B2013,1(6):740-743. doi: 10.1039/C2TB00186A

    81. [81]

      Amir R. J., Zhong S., Pochan D. J., Hawker C. J.. Enzymatically triggered self-assembly of block copolymers[J]. J. Am. Chem. Soc., 2009,131(39):13949-13951. doi: 10.1021/ja9060917

    82. [82]

      Meers P.. Enzyme-activated targeting of liposomes[J]. Adv. Drug Deliv. Rev., 2001,53(3):265-272. doi: 10.1016/S0169-409X(01)00205-8

    83. [83]

      Rao J. Y., Khan A.. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif[J]. J. Am. Chem. Soc., 2013,135(38):14056-14059. doi: 10.1021/ja407514z

    84. [84]

      Harnoy A. J., Rosenbaum I., Tirosh E., Ebenstein Y., Shaharabani R., Beck R., Amir R. J.. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers[J]. J. Am. Chem. Soc., 2014,136(21):7531-7534. doi: 10.1021/ja413036q

    85. [85]

      Harnoy A. J., Buzhor M., Tirosh E., Shaharabani R., Beck R., Amir R. J.. Modular synthetic approach for adjusting the disassembly rates of enzyme-responsive polymeric micelles[J]. Biomacromolecules, 2017,18(4):1218-1228. doi: 10.1021/acs.biomac.6b01906

    86. [86]

      Saxena S., Jayakannan M.. Enzyme and pH dual responsive amino acid based biodegradable polymer nanocarrier for multidrug delivery to cancer cells[J]. J. Polym. Sci., Part A:Polym. Chem., 2016,54(20):3279-3293. doi: 10.1002/pola.v54.20

    87. [87]

      Wang C., Chen Q. S., Wang Z. Q., Zhang X.. An enzyme-responsive polymeric superamphiphile[J]. Angew. Chem. Int. Ed., 2010,49(46):8612-8615. doi: 10.1002/anie.201004253

    88. [88]

      Li Y. M., Liu G. H., Wang X. R., Wu J. M., Liu S. Y.. Enzyme-responsive polymeric vesicles for bacterial-strainselective delivery of antimicrobial agents[J]. Angew. Chem. Int. Ed., 2016,128(5):1792-1796. doi: 10.1002/ange.201509401

    89. [89]

      Li Y. M., Liu S. Y., Li Y. M., Liu S. Y.. Enzyme-triggered transition from polymeric vesicles to core cross-linked micelles for selective release of antimicrobial agents[J]. Acta Polymerica Sinica (in Chinese), 2017(7):1178-1190.  

    90. [90]

      Seeman N. C.. DNA in a material world[J]. Nature, 2003,421(6921):427-431. doi: 10.1038/nature01406

    91. [91]

      Aldaye F. A., Palmer A. L., Sleiman H. F.. Assembling materials with DNA as the guide[J]. Science, 2008,321(5897):1795-1799. doi: 10.1126/science.1154533

    92. [92]

      Mclaughlin C. K., Hamblin G. D., Sleiman H. F.. Supramolecular DNA assembly[J]. Chem. Soc. Rev., 2011,40(12):5647-5656. doi: 10.1039/c1cs15253j

    93. [93]

      Edwardson T. G. W., Carneiro K. M. M., Mclaughlin C. K., Serpell C. J., Sleiman H. F.. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly[J]. Nat. Chem., 2013,5(10):868-875. doi: 10.1038/nchem.1745

    94. [94]

      Bujold K. E., Fakhoury J., Edwardson T. G. W., Carneiro K. M. M., Briard J. N., Godin A. G., Amrein L., Hamblin G. D., Panasci L. C., Wiseman P. W., Sleiman H.. Sequenceresponsive unzipping DNA cubes with tunable cellular uptake profiles[J]. Chem. Sci., 2014,5(6):2449-2455. doi: 10.1039/C4SC00646A

    95. [95]

      Peterson G. I., Larsen M. B., Boydston A. J., Boydston A. J.. Controlled depolymerization:stimuli-responsive self-immolative polymers[J]. Macromolecules, 2012,45(18):7317-7328. doi: 10.1021/ma300817v

  • 加载中
    1. [1]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    2. [2]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    3. [3]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    4. [4]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    11. [11]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    12. [12]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    13. [13]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    14. [14]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    15. [15]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

    16. [16]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    17. [17]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    20. [20]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

Metrics
  • PDF Downloads(0)
  • Abstract views(870)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return