Citation: Chun-Xiong Zheng, Yu Zhao, Yang Liu. Recent Advances in Self-assembled Nano-therapeutics[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 322-346. doi: 10.1007/s10118-018-2078-y shu

Recent Advances in Self-assembled Nano-therapeutics

  • Corresponding author: Yang Liu, yliu@nankai.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 30 September 2017
    Accepted Date: 26 October 2017
    Available Online: 26 December 2017

  • The applications of nanotechnology in biomedicine have gained considerable attentions in recent years owing to the great enhancement of therapeutic efficiency. Integration of self-assembly into nanotechnology has brought tremendous convenience during the formation of nano-carriers. Based on distinctive methods of self-assembly, nano-therapeutics have been developed to an impressive stage with the ability to perform site-specific delivery with temporal and spatial control. This review focuses on the recent advances in the preparing methods for nano-therapeutics, and their applications in the treatments of diseases.
  • 加载中
    1. [1]

      Salomon J. A., Wang H., Freeman M. K.. Healthy life expectancy for 187 countries, ,1990-2010:a systematic analysis for the global burden of disease study[J]. Lancet, 2013,381(9867):628-628.  

    2. [2]

      Porter R.. The nature of suffering and the goals of medicine[J]. Hist. Phil. Life Sci., 1997,19(2):297-298.

    3. [3]

      Liu Y., Li J., Lu Y.. Enzyme therapeutics for systemic detoxification[J]. Adv. Drug Deliv. Rev., 2015,90(1):24-39.  

    4. [4]

      Duncan R.. Polymer conjugates as anticancer nanomedicines[J]. Nat. Rev. Cancer, 2006,6(9):688-701. doi: 10.1038/nrc1958

    5. [5]

      Farokhzad O. C., Langer R.. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009,3(1):16-20. doi: 10.1021/nn900002m

    6. [6]

      Zhang L., Gu F. X., Chan J. M., Wang A. Z.. Nanoparticles in medicine:Therapeutic applications and developments[J]. Clin. Pharmacol. Ther., 2008,83(5):761-769. doi: 10.1038/sj.clpt.6100400

    7. [7]

      Ferrari M.. Cancer nanotechnology:opportunities and challenges[J]. Nat. Rev. Cancer, 2005,5(3):161-171. doi: 10.1038/nrc1566

    8. [8]

      Singh K. K.. Nanotechnology in cancer detection and treatment[J]. Technol. Cancer Res. T., 2005,4(6):583-583. doi: 10.1177/153303460500400601

    9. [9]

      Couvreur P., Vauthier C.. Nanotechnology:intelligent design to treat complex disease[J]. Pharm. Res., 2006,23(7):1417-1450. doi: 10.1007/s11095-006-0284-8

    10. [10]

      Bertrand N., Wu J., Xu X., Kamaly N.. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology[J]. Adv. Drug Deliv. Rev., 2014,66(1):2-25.  

    11. [11]

      Ozin G. A., Hou K., Lotsch B. V., Cademartiri L.. Nanofabrication by self-assembly[J]. Mater. Today, 2009,12(5):12-23. doi: 10.1016/S1369-7021(09)70156-7

    12. [12]

      Mastrangeli M., Abbasi S., Varel C., Van Hoof C.. Self-assembly from milli-to nanoscales:methods and applications[J]. J. Micromech Microeng., 2009,19(8). doi: 10.1088/0960-1317/19/8/083001

    13. [13]

      Bishop K. J., Wilmer C. E., Soh S., Grzybowski B. A.. Nanoscale forces and their uses in self-assembly[J]. Small, 2009,5(14):1600-1630. doi: 10.1002/smll.v5:14

    14. [14]

      Peer D., Karp J. M., Hong S., FaroKhzad O. C.. Nanocarriers as an emerging platform for cancer therapy[J]. Nat. Nanotechnol., 2007,2(12):751-760. doi: 10.1038/nnano.2007.387

    15. [15]

      Letchford K., Burt H.. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures:micelles, nanospheres, nanocapsules and polymersomes[J]. Eur. J. Pharm. Biopharm., 2007,65(3):259-269. doi: 10.1016/j.ejpb.2006.11.009

    16. [16]

      Chandler D.. Interfaces and the driving force of hydrophobic assembly[J]. Nature, 2005,437(7059):640-647. doi: 10.1038/nature04162

    17. [17]

      Wang C., Wang Z., Zhang X.. Amphiphilic building blocks for self-assembly:From amphiphiles to supra-amphiphiles[J]. Acc. Chem. Res., 2012,45(4):608-618. doi: 10.1021/ar200226d

    18. [18]

      Hill J. P., Shrestha L. K., Ishihara S., Ji Q.. Self-assembly:from amphiphiles to chromophores and beyond[J]. Molecules, 2014,19(6):8589-8609.  

    19. [19]

      Rösler A., Vandermeulen G. W. M., Klok H. A.. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers[J]. Adv. Drug Deliv. Rev., 2012,64(1):270-279.  

    20. [20]

      Xiong X. B., Binkhathlan Z., Molavi O., Lavasanifar A.. Amphiphilic block co-polymers:Preparation and application in nanodrug and gene delivery[J]. Acta Biomater., 2012,8(6):2017-2033. doi: 10.1016/j.actbio.2012.03.006

    21. [21]

      Aziz Z. A. B. A., Ahmad A., Mohd-Setapar S. H., Hassan H.. Recent advances in drug delivery of polymeric nano-micelles[J]. Curr. Drug Metab., 2017,18(1):16-29. doi: 10.2174/1389200217666160921143616

    22. [22]

      Allain V., Bourgaux C., Couvreur P.. Self-assembled nucleolipids:From supramolecular structure to soft nucleic acid and drug delivery devices[J]. Nucleic Acids Res., 2012,40(5):1891-1903. doi: 10.1093/nar/gkr681

    23. [23]

      Chen Y., Liang G.. Enzymatic self-assembly of nanostructures for theranostics[J]. Theranostics, 2012,2(2):139-147. doi: 10.7150/thno.3696

    24. [24]

      Mai Y., Eisenberg A.. Self-assembly of block copolymers[J]. Chem. Soc. Rev., 2012,41(18):5969-5985. doi: 10.1039/c2cs35115c

    25. [25]

      Kim J. K., Yang S. Y., Lee Y., Kim Y.. Functional nanomaterials based on block copolymer self-assembly[J]. Prog. Polym. Sci., 2010,35(11):1325-1349. doi: 10.1016/j.progpolymsci.2010.06.002

    26. [26]

      Zhang Z., Ma R., Shi L.. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions[J]. Acc. Chem. Res., 2014,47(4):1426-1437. doi: 10.1021/ar5000264

    27. [27]

      Wu W., Wu D., Li S., Lin Z.. Doxorubicin loaded ph-sensitive micelles for potential tumor therapy[J]. J. Control. Release, 2013,172(1):E72-E73.

    28. [28]

      Cheng T., Ma R., Zhang Y., Ding Y.. A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake[J]. Chem. Commun., 2015,51(81):14985-14988. doi: 10.1039/C5CC05854F

    29. [29]

      Breus V. V., Heyes C. D., Tron K., Nienhaus G. U.. Zwitterionic biocompatible quantum dots for wide ph stability and weak nonspecific binding to cells[J]. ACS Nano, 2009,3(9):2573-2580. doi: 10.1021/nn900600w

    30. [30]

      Arvizo R. R., Miranda O. R., Thompson M. A., Pabelick C. M.. Effect of nanoparticle surface charge at the plasma membrane and beyond[J]. Nano Lett., 2010,10(7):2543-2548. doi: 10.1021/nl101140t

    31. [31]

      Deshpande M. C., Davies M. C., Garnett M. C., Williams P. M.. The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes[J]. J. Control. Release, 2004,97(1):143-156. doi: 10.1016/j.jconrel.2004.02.019

    32. [32]

      Yuan Y. Y., Mao C. Q., Du X. J., Du J. Z.. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor[J]. Adv. Mater., 2012,24(40):5476-5480. doi: 10.1002/adma.v24.40

    33. [33]

      Du J. Z., Sun T. M., Song W. J., Wu J.. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery[J]. Angew. Chem. Int. Ed., 2010,49(21):3621-3626. doi: 10.1002/anie.200907210

    34. [34]

      Xiong M. H., Bao Y., Yang X. Z., Wang Y. C.. Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery[J]. J. Am. Chem. Soc., 2012,134(9):4355-4362. doi: 10.1021/ja211279u

    35. [35]

      Du J. Z., Du X. J., Mao C. Q., Wang J.. Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc., 2011,133(44):17560-17563. doi: 10.1021/ja207150n

    36. [36]

      Pereverzeva E., Treschalin I., Bodyagin D., Maksimenko O.. Intravenous tolerance of a nanoparticle-based formulation of doxorubicin in healthy rats[J]. Toxicol. Lett., 2008,178(1):9-19. doi: 10.1016/j.toxlet.2008.01.020

    37. [37]

      Harker W. G., Sikic B. I.. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line mes-sa[J]. Cancer Res., 1985,45(9):4091-4096.  

    38. [38]

      Cheng T., Liu J., Ren J., Huang F.. Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance[J]. Theranostics, 2016,6(9):1277-1292. doi: 10.7150/thno.15133

    39. [39]

      Sharma A., Sharma U. S.. Liposomes in drug delivery:Progress and limitations[J]. Int. J. Pharmaceut., 1997,154(2):123-140. doi: 10.1016/S0378-5173(97)00135-X

    40. [40]

      Wang Y., Miao L., Satterlee A., Huang L.. Delivery of oligonucleotides with lipid nanoparticles[J]. Adv. Drug Deliv. Rev., 2015,87(1):68-80.  

    41. [41]

      Goins B., Phillips W. T., Bao A.. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy[J]. Expert Opin. Drug Deliv., 2016,13(6):873-889.  

    42. [42]

      Sercombe L., Veerati T., Moheimani F., Wu S. Y.. Advances and challenges of liposome assisted drug delivery[J]. Front Pharmacol., 20156. doi: 10.3389/fphar.2015.00286

    43. [43]

      Barenholz Y.. Liposome application:Problems and prospects[J]. Curr. Opin. Colloid Interface Sci., 2001,6(1):66-77. doi: 10.1016/S1359-0294(00)00090-X

    44. [44]

      Kraft J. C., Freeling J. P., Wang Z., Ho R. J.. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems[J]. J. Pharm. Sci., 2014,103(1):29-52.  

    45. [45]

      Chang H. I., Yeh M. K.. Clinical development of liposome-based drugs:Formulation, characterization, and therapeutic efficacy[J]. Int. J. Nanomed., 2012,7(1):49-60.  

    46. [46]

      Yang F., Jin C., Jiang Y., Li J.. Liposome based delivery systems in pancreatic cancer treatment:From bench to bedside[J]. Cancer Treat Rev., 2011,37(8):633-642. doi: 10.1016/j.ctrv.2011.01.006

    47. [47]

      Mo R., Jiang T., Gu Z.. Recent progress in multidrug delivery to cancer cells by liposomes[J]. Nanomedicine, 2014,9(8):1117-1120. doi: 10.2217/nnm.14.62

    48. [48]

      Immordino M. L., Dosio F., Cattel L.. Stealth liposomes:Review of the basic science, rationale, and clinical applications, existing and potential[J]. Int. J. Nanomed., 2006,1(3):297-315. doi: 10.2217/17435889.1.3.297

    49. [49]

      Wang H., Zhang S., Liao Z., Wang C.. Peglated magnetic polymeric liposome anchored with tat for delivery of drugs across the blood-spinal cord barrier[J]. Biomaterials, 2010,31(25):6589-6596. doi: 10.1016/j.biomaterials.2010.04.057

    50. [50]

      Suntres Z. E.. Liposomal antioxidants for protection against oxidant-induced damage[J]. J. Toxicol., 2011. doi: 10.1155/2011/152474

    51. [51]

      Zhang X., Guo S., Fan R., Yu M.. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells[J]. Biomaterials, 2012,33(29):7103-7114. doi: 10.1016/j.biomaterials.2012.06.048

    52. [52]

      Wang H., Zhao P., Su W., Wang S.. PLGA/polymeric liposome for targeted drug and gene co-delivery[J]. Biomaterials, 2010,31(33):8741-8748. doi: 10.1016/j.biomaterials.2010.07.082

    53. [53]

      Jiang T., Mo R., Bellotti A., Zhou J.. Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy[J]. Adv. Funct. Mater., 2014,24(16):2295-2304. doi: 10.1002/adfm.v24.16

    54. [54]

      Mo R., Jiang T. Y., Gu Z.. Enhanced anticancer efficacy by atp-mediated liposomal drug delivery[J]. Angew. Chem. Int Ed., 2014,53(23):5815-5820. doi: 10.1002/anie.201400268

    55. [55]

      Schafer J., Hobel S., Bakowsky U., Aigner A.. Liposome-polyethylenimine complexes for enhanced DNA and sirna delivery[J]. Biomaterials, 2010,31(26):6892-6900. doi: 10.1016/j.biomaterials.2010.05.043

    56. [56]

      Rengan A. K., Bukhari A. B., Pradhan A., Malhotra R.. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer[J]. Nano Lett., 2015,15(2):842-848. doi: 10.1021/nl5045378

    57. [57]

      Hubbell J. A., Chilkoti A.. Nanomaterials for drug delivery[J]. Science, 2012,337(6092):303-305. doi: 10.1126/science.1219657

    58. [58]

      Park J. H., Lee S., Kim J. H., Park K.. Polymeric nanomedicine for cancer therapy[J]. Prog. Polym. Sci., 2008,33(1):113-137. doi: 10.1016/j.progpolymsci.2007.09.003

    59. [59]

      Tong R., Cheng J.. Anticancer polymeric nanomedicines[J]. Polym. Rev., 2007,47(3):345-381. doi: 10.1080/15583720701455079

    60. [60]

      Huang P., Wang D., Su Y., Huang W.. Combination of small molecule prodrug and nanodrug delivery:Amphiphilic drug-drug conjugate for cancer therapy[J]. J. Am. Chem. Soc., 2014,136(33):11748-56. doi: 10.1021/ja505212y

    61. [61]

      Hu M., Huang P., Wang Y., Su Y.. Synergistic combination chemotherapy of camptothecin and floxuridine through self-assembly of amphiphilic drug-drug conjugate[J]. Bioconjugate. Chem., 2015,26(12):2497-2506. doi: 10.1021/acs.bioconjchem.5b00513

    62. [62]

      Zhang T., Huang P., Shi L., Su Y.. Self-assembled nanoparticles of amphiphilic twin drug from floxuridine and bendamustine for cancer therapy[J]. Mol. Pharm., 2015,12(7):2328-2336. doi: 10.1021/acs.molpharmaceut.5b00005

    63. [63]

      Ma Y., Mou Q., Sun M., Yu C.. Cancer theranostic nanoparticles self-assembled from amphiphilic small molecules with equilibrium shift-induced renal clearance[J]. Theranostics, 2016,6(10):1703-1716. doi: 10.7150/thno.15647

    64. [64]

      Mou Q., Ma Y., Zhu X., Yan D.. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy[J]. J. Control. Release, 2016,230(1):34-44.  

    65. [65]

      Wang Y., Huang P., Hu M., Huang W.. Self-delivery nanoparticles of amphiphilic methotrexate-gemcitabine prodrug for synergistic combination chemotherapy via effect of deoxyribonucleotide pools[J]. Bioconjugate. Chem., 2016,27(11):2722-2733. doi: 10.1021/acs.bioconjchem.6b00503

    66. [66]

      Pack D. W., Hoffman A. S., Pun S., Stayton P. S.. Design and development of polymers for gene delivery[J]. Nat. Rev. Drug Discov., 2005,4(7):581-93. doi: 10.1038/nrd1775

    67. [67]

      Xu Z. P., Zeng Q. H., Lu G. Q., Yu A. B.. Inorganic nanoparticles as carriers for efficient cellular delivery[J]. Chem Eng. Sci., 2006,61(3):1027-1040. doi: 10.1016/j.ces.2005.06.019

    68. [68]

      Lacerda L., Raffa S., Prato M., Bianco A.. Cell-penetrating cnts for delivery of therapeutics[J]. Nano Today, 2007,2(6):38-43. doi: 10.1016/S1748-0132(07)70172-X

    69. [69]

      Mao S., Sun W., Kissel T.. Chitosan-based formulations for delivery of DNA and sirna[J]. Adv. Drug Deliv. Rev., 2010,62(1):12-27. doi: 10.1016/j.addr.2009.08.004

    70. [70]

      Chapel J. P., Berret J. F.. Versatile electrostatic assembly of nanoparticles and polyelectrolytes:Coating, clustering and layer-by-layer processes[J]. Curr. Opin. Colloid Interface Sci., 2012,17(2):97-105. doi: 10.1016/j.cocis.2011.08.009

    71. [71]

      Shmueli R. B., Anderson D. G., Green J. J.. Electrostatic surface modifications to improve gene delivery[J]. Expert Opin. Drug Deliv., 2010,7(4):535-550. doi: 10.1517/17425241003603653

    72. [72]

      Mulligan R. C.. The basic science of gene therapy[J]. Science, 1993,260(5110):926-32. doi: 10.1126/science.8493530

    73. [73]

      Liu Y., Du J., Choi J. S., Chen K. J.. A high-throughput platform for formulating and screening multifunctional nanoparticles capable of simultaneous delivery of genes and transcription factors[J]. Angew. Chem. Int. Ed., 2016,55(1):169-173. doi: 10.1002/anie.201507546

    74. [74]

      Verma I. M., Somia N.. Gene therapy-promises, problems and prospects[J]. Nature, 1997,389(6648):239-42. doi: 10.1038/38410

    75. [75]

      Kircheis R., Wightman L., Wagner E.. Design and gene delivery activity of modified polyethylenimines[J]. Adv. Drug Deliv. Rev., 2001,53(3):341-358. doi: 10.1016/S0169-409X(01)00202-2

    76. [76]

      Harris T. J., Green J. J., Fung P. W., Langer R.. Tissue-specific gene delivery via nanoparticle coating[J]. Biomaterials, 2010,31(5):998-1006. doi: 10.1016/j.biomaterials.2009.10.012

    77. [77]

      Liu Y., Wang H., Kamei K. I., Yan M.. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles[J]. Angew. Chem. Int. Ed., 2011,50(13):3058-3062. doi: 10.1002/anie.201005740

    78. [78]

      Won Y. W., Adhikary P. P., Lim K. S., Kim H. J.. Oligopeptide complex for targeted non-viral gene delivery to adipocytes[J]. Nat. Mater., 2014,13(12):1157-1164. doi: 10.1038/nmat4092

    79. [79]

      Ariga K., Lvov Y. M., Kawakami K., Ji Q.. Layer-by-layer self-assembled shells for drug delivery[J]. Adv. Drug Deliv. Rev., 2011,63(9):762-771. doi: 10.1016/j.addr.2011.03.016

    80. [80]

      Ariga K., Yamauchi Y., Rydzek G., Ji Q.. Layer-by-layer nanoarchitectonics:Invention, innovation, and evolution[J]. Chem Lett., 2014,43(1):36-68. doi: 10.1246/cl.130987

    81. [81]

      Fujii N., Fujimoto K., Michinobu T., Akada M.. The simplest layer-by-layer assembly structure:Best paired polymer electrolytes with one charge per main chain carbon atom for multi layered thin films[J]. Macromolecules, 2010,43(8):3947-3955. doi: 10.1021/ma100473j

    82. [82]

      Lvov Y., Onda M., Ariga K., Kunitake T.. Ultrathin films of charged polysaccharides assembled alternately with linear polyions[J]. J. Biomat. Sci. Polym. E, 1998,9(4):345-355. doi: 10.1080/09205063.1998.9753060

    83. [83]

      Katagiri K., Hamasaki R., Ariga K., Kikuchi J.. Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic-inorganic hybrid[J]. J. Am. Chem. Soc., 2002,124(27):7892-7893. doi: 10.1021/ja0259281

    84. [84]

      Elbakry A., Zaky A., Liebkl R., Rachel R.. Layer-by-layer assembled gold nanoparticles for sirna delivery[J]. Nano Lett., 2009,9(5):2059-2064. doi: 10.1021/nl9003865

    85. [85]

      Saurer E. M., Flessner R. M., Sullivan S. P., Prausnitz M. R.. Layer-by-layer assembly of DNA-and protein-containing films on microneedles for drug delivery to the skin[J]. Biomacromolecules, 2010,11(11):3136-3143. doi: 10.1021/bm1009443

    86. [86]

      Morton S. W., Shah N. J., Quadir M. A., Deng Z. J.. Osteotropic therapy via targeted layer-by-layer nanoparticles[J]. Adv. Healthc. Mater., 2014,3(6):867-75. doi: 10.1002/adhm.201300465

    87. [87]

      Shutava T. G., Balkundi S. S., Vangala P., Steffan J. J.. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols[J]. ACS Nano, 2009,3(7):1877-1885. doi: 10.1021/nn900451a

    88. [88]

      Agarwal A., Lvov Y., Sawant R., Torchilin V.. Stable nanocolloids of poorly soluble drugs with high drug content prepared using the combination of sonication and layer-by-layer technology[J]. J. Control. Release, 2008,128(3):255-260. doi: 10.1016/j.jconrel.2008.03.017

    89. [89]

      Pargaonkar N., Lvov Y. M., Li N., Steenekamp J. H.. Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly[J]. Pharm. Res., 2005,22(5):826-835. doi: 10.1007/s11095-005-2600-0

    90. [90]

      Deng Z. J., Morton S. W., Ben-Akiva E., Dreaden E. C.. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and sirna for potential triple-negative breast cancer treatment[J]. ACS Nano, 2013,7(11):9571-9584. doi: 10.1021/nn4047925

    91. [91]

      Poon Z., Chang D., Zhao X., Hammond P. T.. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia[J]. ACS Nano, 2011,5(6):4284-4292. doi: 10.1021/nn200876f

    92. [92]

      Kim B. S., Park S. W., Hammond P. T.. Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces[J]. ACS Nano, 2008,2(2):386-392. doi: 10.1021/nn700408z

    93. [93]

      Ma X., Zhao Y.. Biomedical applications of supramolecular systems based on host-guest interactions[J]. Chem. Rev., 2015,115(15):7794-7839. doi: 10.1021/cr500392w

    94. [94]

      Karim A. A., Dou Q., Li Z., Loh X. J.. Emerging supramolecular therapeutic carriers based on host-guest interactions[J]. Chem. Asian J., 2016,11(9):1300-1321. doi: 10.1002/asia.v11.9

    95. [95]

      Hu J., Liu S.. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J]. Acc. Chem. Res., 2014,47(7):2084-2095. doi: 10.1021/ar5001007

    96. [96]

      Zhang J., Ma P. X.. Cyclodextrin-based supramolecular systems for drug delivery:Recent progress and future perspective[J]. Adv. Drug Deliv. Rev., 2013,65(9):1215-1233. doi: 10.1016/j.addr.2013.05.001

    97. [97]

      Wang L., Li L. L., Fan Y. S., Wang H.. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics[J]. Adv. Mater., 2013,25(28):3888-3898. doi: 10.1002/adma.v25.28

    98. [98]

      Challa R., Ahuja A., Ali J., Khar R. K.. Cyclodextrins in drug delivery:An updated review[J]. AAPS PharmSciTech., 2005,6(2):E329-E357. doi: 10.1208/pt060243

    99. [99]

      Stella V. J., Rajewski R. A.. Cyclodextrins:Their future in drug formulation and delivery[J]. Pharm. Res-Dordr., 1997,14(5):556-567. doi: 10.1023/A:1012136608249

    100. [100]

      Gref R., Amiel C., Molinard K., Daoud-Mahammed S.. New self-assembled nanogels based on host-guest interactions:Characterization and drug loading[J]. J. Control. Release, 2006,111(3):316-324. doi: 10.1016/j.jconrel.2005.12.025

    101. [101]

      Zhang J., Ma P. X.. Polymeric core-shell assemblies mediated by host-guest interactions:versatile nanocarriers for drug delivery[J]. Angew. Chem. Int. Ed., 2009,48(5):964-968. doi: 10.1002/anie.v48:5

    102. [102]

      Hu Q. D., Tang G. P., Chu P. K.. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery:from design to applications[J]. Acc. Chem. Res., 2014,47(7):2017-2025. doi: 10.1021/ar500055s

    103. [103]

      Wang H., Wang S., Su H., Chen K. J.. A supramolecular approach for preparation of size-controlled nanoparticles[J]. Angew. Chem. Int. Ed., 2009,48(24):4344-4318. doi: 10.1002/anie.v48:24

    104. [104]

      Ang C.Y., Tan S. Y., Wang X., Zhang Q.. Supramolecular nanoparticle carriers self-assembled from cyclodextrin-and adamantane-functionalized polyacrylates for tumor-targeted drug delivery[J]. J. Mater. Chem. B, 2014,2(13):1879-1890. doi: 10.1039/c3tb21325k

    105. [105]

      Qu D. H., Wang Q. C., Zhang Q. W., Ma X.. Photoresponsive host-guest functional systems[J]. Chem. Rev., 2015,115(15):7543-7588. doi: 10.1021/cr5006342

    106. [106]

      Dan Z., Cao H., He X., Zeng L.. Biological stimuli-responsive cyclodextrin-based host-guest nanosystems for cancer therapy[J]. Int. J. Pharm., 2015,483(1-2):63-68. doi: 10.1016/j.ijpharm.2015.01.035

    107. [107]

      Zhang W., Li Y., Sun J. H., Tan C. P.. Supramolecular self-assembled nanoparticles for chemo-photodynamic dual therapy against cisplatin resistant cancer cells[J]. Chem. Commun., 2015,51(10):1807-1810. doi: 10.1039/C4CC08583C

    108. [108]

      Wang Y., Li D., Jin Q., Ji J.. pH-responsive supramolecular prodrug micelles based on cucurbit 8 uril for intracellular drug delivery[J]. J Control. Release, 2015,213(1):E134-E135.

    109. [109]

      Yu G., Jie K., Huang F.. Supramolecular amphiphiles based on host-guest molecular recognition motifs[J]. Chem. Rev., 2015,115(15):7240-7303. doi: 10.1021/cr5005315

    110. [110]

      Yang B., Dong X., Lei Q., Zhuo R.. Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs[J]. ACS Appl. Mater. Interfaces, 2015,7(39):22084-22094. doi: 10.1021/acsami.5b07549

    111. [111]

      Liu Y., Yu C., Jin H., Jiang B.. A supramolecular janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution[J]. J. Am. Chem. Soc., 2013,135(12):4765-4770. doi: 10.1021/ja3122608

    112. [112]

      Li Y., Liu Y., Ma R., Xu Y.. A g-quadruplex hydrogel via multicomponent self-assembly:Formation and zero-order controlled release[J]. ACS Appl. Mater. Interfaces, 2017,9(15):13056-13067. doi: 10.1021/acsami.7b00957

    113. [113]

      Zhao L., Qu R., Li A., Ma R.. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions[J]. Chem. Commun., 2016,52(93):13543-13555. doi: 10.1039/C6CC05449H

    114. [114]

      Gu Z., Biswas A., Zhao M., Tang Y.. Tailoring nanocarriers for intracellular protein delivery[J]. Chem. Soc. Rev., 2011,40(7):3638-3655. doi: 10.1039/c0cs00227e

    115. [115]

      Yan M., Ge J., Liu Z., Ouyang P.. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability[J]. J. Am. Chem. Soc., 2006,128(34):11008-11009. doi: 10.1021/ja064126t

    116. [116]

      Yan M., Du J., Gu Z., Liang M.. A novel intracellular protein delivery platform based on single-protein nanocapsules[J]. Nat. Nanotechnol., 2010,5(1):48-53. doi: 10.1038/nnano.2009.341

    117. [117]

      Gu Z., Yan M., Hu B., Joo K. I.. Protein nanocapsule weaved with enzymatically degradable polymeric network[J]. Nano Lett., 2009,9(12):4533-4538. doi: 10.1021/nl902935b

    118. [118]

      Wen J., Anderson S. M., Du J., Yan M.. Controlled protein delivery based on enzyme-responsive nanocapsules[J]. Adv. Mater., 2011,23(39):4549-53. doi: 10.1002/adma.201101771

    119. [119]

      Liang S., Liu Y., Jin X., Liu G.. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins[J]. Nano Res., 2016,9(4):1022-1031. doi: 10.1007/s12274-016-0991-3

    120. [120]

      Zhao M., Hu B., Gu Z., Joo K. I.. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex[J]. Nano Today, 2013,8(1):11-20. doi: 10.1016/j.nantod.2012.12.003

    121. [121]

      Tian H., Du J., Wen J., Liu Y.. Growth-factor nanocapsules that enable tunable controlled release for bone regeneration[J]. ACS Nano, 2016,10(8):7362-7369. doi: 10.1021/acsnano.5b07950

    122. [122]

      Liu C., Wen J., Meng Y., Zhang K.. Efficient delivery of therapeutic mirna nanocapsules for tumor suppression[J]. Adv. Mater., 2015,27(2):292-297. doi: 10.1002/adma.v27.2

    123. [123]

      Peer D., Karp J. M., Hong S., FaroKHzad O. C.. Nanocarriers as an emerging platform for cancer therapy[J]. Nat. Nanotechnol., 2007,2(12):751-760. doi: 10.1038/nnano.2007.387

    124. [124]

      Wang M., Thanou M.. Targeting nanoparticles to cancer[J]. Pharmacol. Res., 2010,62(2):90-99. doi: 10.1016/j.phrs.2010.03.005

    125. [125]

      DeSantis C. E., Lin C. C., Mariotto A. B., Siegel R. L.. Cancer treatment and survivorship statistics, ,2014[J]. CA:A Cancer Journal for Clinicians, 2014,64(4):252-271. doi: 10.3322/caac.v64.4

    126. [126]

      Sun T. M., Zhang Y. S., Pang B., Hyun D. C.. Engineered nanoparticles for drug delivery in cancer therapy[J]. Angew. Chem. Int. Ed., 2014,53(46):12320-12364.  

    127. [127]

      Liu Y., Li J., Lu Y. F.. Enzyme therapeutics for systemic detoxification[J]. Adv. Drug Deliv. Rev., 2015,90:24-39. doi: 10.1016/j.addr.2015.05.005

    128. [128]

      Bae Y. H., Park K.. Targeted drug delivery to tumors:myths, reality and possibility[J]. J. Control. Release, 2011,153(3):198-205. doi: 10.1016/j.jconrel.2011.06.001

    129. [129]

      LaVan D. A., McGuire T., Langer R.. Small-scale systems for in vivo drug delivery[J]. Nat. Biotechnol., 2003,21(10):1184-1191. doi: 10.1038/nbt876

    130. [130]

      Ganta S., Devalapally H., Shahiwala A., Amiji M.. A review of stimuli-responsive nanocarriers for drug and gene delivery[J]. J. Control. Release, 2008,126(3):187-204. doi: 10.1016/j.jconrel.2007.12.017

    131. [131]

      Wang G., Uludag H.. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles[J]. Expert Opin. Drug Deliv., 2008,5(5):499-515. doi: 10.1517/17425247.5.5.499

    132. [132]

      Gao H., Cheng T., Liu J., Liu J.. Self-regulated multifunctional collaboration of targeted nanocarriers for enhanced tumor therapy[J]. Biomacromolecules, 2014,15(10):3634-3642. doi: 10.1021/bm5009348

    133. [133]

      Shuhendler A. J., Prasad P., Leung M., Rauth A. M.. A novel solid lipid nanoparticle formulation for active targeting to tumor alpha(v)beta(3) integrin receptors reveals cyclic rgd as a double-edged sword[J]. Adv. Healthc. Mater., 2012,1(5):600-608. doi: 10.1002/adhm.201200006

    134. [134]

      Cheng T. J., Ma R. J., Zhang Y. M., Ding Y. X.. A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake[J]. Chem. Commun., 2015,51(81):14985-14988. doi: 10.1039/C5CC05854F

    135. [135]

      Falamarzian A., Lavasanifar A.. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(epsilon-caprolactone) based nano-carriers for the solubilization and delivery of amphotericin b[J]. Colloids and Surfaces B-Biointerfaces, 2010,81(1):313-320. doi: 10.1016/j.colsurfb.2010.07.025

    136. [136]

      Gao H. J., Xiong J., Cheng T. J., Liu J. J.. In vivo biodistribution of mixed shell micelles with tunable hydrophilic/hydrophobic surface[J]. Biomacromolecules, 2013,14(2):460-467. doi: 10.1021/bm301694t

    137. [137]

      Wang H. X., Yang X. Z., Sun C. Y., Mao C. Q.. Matrix metalloproteinase 2-responsive micelle for sirna delivery[J]. Biomaterials, 2014,35(26):7622-7634. doi: 10.1016/j.biomaterials.2014.05.050

    138. [138]

      Sun C. Y., Shen S., Xu C. F., Li H. J.. Tumor acidity-sensitive polymeric vector for active targeted sirna delivery[J]. J. Am. Chem. Soc., 2015,137(48):15217-15224. doi: 10.1021/jacs.5b09602

    139. [139]

      Guan X., Guo Z., Lin L., Chen J.. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system[J]. Nano Lett., 2016,16(11):6823-6831. doi: 10.1021/acs.nanolett.6b02536

    140. [140]

      Wakebayashi D., Nishiyama N., Yamasaki Y., Itaka K.. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system:Their preparation and gene transfecting efficiency against cultured HEPG2 cells[J]. J. Control. Release, 2004,95(3):653-664. doi: 10.1016/j.jconrel.2004.01.003

    141. [141]

      Harada A., Kataoka K.. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers[J]. J. Control. Release, 2001,72(1-3):85-91. doi: 10.1016/S0168-3659(01)00264-4

    142. [142]

      Dufresne M. H., Leroux J. C.. Study of the micellization behavior of different order amino block copolymers with heparin[J]. Pharm. Res., 2004,21(1):160-169. doi: 10.1023/B:PHAM.0000012164.60867.c6

    143. [143]

      Biswas A., Joo K. I., Liu J., Zhao M. X.. Endoprotease-mediated intracellular protein delivery using nanocapsules[J]. ACS Nano, 2011,5(2):1385-1394. doi: 10.1021/nn1031005

    144. [144]

      Liu Y., Wang H., Kamei K., Yan M.. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles[J]. Angew. Chem. Int. Ed., 2011,50(13):3058-3062. doi: 10.1002/anie.201005740

    145. [145]

      Govender T., Stolnik S., Xiong C., Zhang S.. Drug-polyionic block copolymer interactions for micelle formation:Physicochemical characterisation[J]. J. Control. Release, 2001,75(3):249-258. doi: 10.1016/S0168-3659(01)00353-4

    146. [146]

      Safra T., Muggia F., Jeffers S., Tsao-Wei D. D.. Pegylated liposomal doxorubicin (doxil):Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m(2)[J]. Ann Oncol., 2000,11(8):1029-1033. doi: 10.1023/A:1008365716693

    147. [147]

      Cho K. J., Wang X., Nie S. M., Chen Z.. Therapeutic nanoparticles for drug delivery in cancer[J]. Clin. Cancer Res., 2008,14(5):1310-1316. doi: 10.1158/1078-0432.CCR-07-1441

    148. [148]

      Koudelka S., Turanek J.. Liposomal paclitaxel formulations[J]. J. Control. Release, 2012,163(3):322-334. doi: 10.1016/j.jconrel.2012.09.006

    149. [149]

      Lim W. T., Leong S. S., Toh C. K., Ang C. S.. A phase i pharmacokinetic study of a liposomal formulation of paclitaxel administered weekly to Asian patients with solid malignancies[J]. J. Clin. Oncol., 2009,27(15)2581.

    150. [150]

      Markman M.. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary[J]. Expert Opin. Pharmaco., 2006,7(11):1469-1474. doi: 10.1517/14656566.7.11.1469

    151. [151]

      Gaspar M. M., Perez-Soler R., Cruz M. E.. Biological characterization of l-asparaginase liposomal formulations[J]. Cancer Chemother. Pharmacol., 1996,38(4):373-377. doi: 10.1007/s002800050497

    152. [152]

      Felgner P. L., Holm M., Chan H.. Cationic liposome mediated transfection[J]. Proc. West Pharmacol. Soc., 1989,32:115-121.

    153. [153]

      Felgner P. L., Ringold G. M.. Cationic liposome-mediated transfection[J]. Nature, 1989,337(6205):387-388. doi: 10.1038/337387a0

    154. [154]

      Murray K. D., McQuillin A., Stewart L., Etheridge C. J.. Cationic liposome-mediated DNA transfection in organotypic explant cultures of the ventral mesencephalon[J]. Gene Ther., 1999,6(2):190-197. doi: 10.1038/sj.gt.3300743

    155. [155]

      Kim J. K., Choi S. H., Kim C. O., Park J. S.. Enhancement of polyethylene glycol (PEG)-modified cationic liposomemediated gene deliveries:effects on serum stability and transfection efficiency[J]. J. Pharm. Pharmacol., 2003,55(4):453-460. doi: 10.1211/002235702928

    156. [156]

      Zhu L., Kate P., Torchilin V. P.. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting[J]. ACS Nano, 2012,6(4):3491-3498. doi: 10.1021/nn300524f

    157. [157]

      Anonymous. Classification and diagnosis of diabetes. Diabetes Care 2015, 38(Suppl. 1), S8-S16.

    158. [158]

      Craft S.. The role of metabolic disorders in alzheimer disease and vascular dementia:Two roads converged[J]. Arch. Neurol., 2009,66(3):300-305.  

    159. [159]

      Canivell S., Gomis R.. Diagnosis and classification of autoimmune diabetes mellitus[J]. Autoimmun. Rev., 2014,13(4-5):403-407. doi: 10.1016/j.autrev.2014.01.020

    160. [160]

      Abdi H., Hosseinpanah F., Azizi F., Hadaegh F.. Screening for dysglycemia:a comment on classification and diagnosis of diabetes in american diabetes association standards of medical care in diabetes-, 2016[J]. Arch. Iran. Med., 2017,20(6):389-389.  

    161. [161]

      Yang H., Zhang C., Li C., Liu Y.. Glucose-responsive polymer vesicles templated by alpha-CD/PEG inclusion complex[J]. Biomacromolecules, 2015,16(4):1372-1381. doi: 10.1021/acs.biomac.5b00155

    162. [162]

      Yang H., Ma R., Yue J., Li C.. A facile strategy to fabricate glucose-responsive vesicles via a template of thermo-sensitive micelles[J]. Polym. Chem., 2015,6(20):3837-3846. doi: 10.1039/C5PY00170F

    163. [163]

      Zhao L., Xiao C. S., Wang L. Y., Gai G. Q.. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery[J]. Chem. Commun., 2016,52(49):7633-7652. doi: 10.1039/C6CC02202B

    164. [164]

      Wang B. L., Ma R. J., Liu G., Li Y.. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin[J]. Langmuir, 2009,25(21):12522-12528. doi: 10.1021/la901776a

    165. [165]

      Cambre J. N., Sumerlin B. S.. Biomedical applications of boronic acid polymers[J]. Polymer, 2011,52(21):4631-4643. doi: 10.1016/j.polymer.2011.07.057

    166. [166]

      Liu G., Ma R. J., Ren J., Li Z.. A glucose-responsive complex polymeric micelle enabling repeated on-off release and insulin protection[J]. Soft Matter, 2013,9(5):1636-1644. doi: 10.1039/C2SM26690C

    167. [167]

      Selkoe D. J., Schenk D.. Alzheimer's disease:Molecular understanding predicts amyloid-based therapeutics[J]. Annu. Rev. Pharmacol. Toxicol, 2003,43:545-84. doi: 10.1146/annurev.pharmtox.43.100901.140248

    168. [168]

      Small D. H., Losic D., Martin L. L., Turner B. J.. Alzheimer's disease therapeutics:new approaches to an ageing problem[J]. IUBMB Life., 2004,56(4):203-208. doi: 10.1080/15216540410001709211

    169. [169]

      Anand R., Gill K. D., Mahdi A. A.. Therapeutics of alzheimer's disease:Past, present and future[J]. Neuropharmacology, 2014,76:27-50. doi: 10.1016/j.neuropharm.2013.07.004

    170. [170]

      Rafii M. S.. Preclinical alzheimer's disease therapeutics[J]. J. Alzheimers Dis., 2014,42(Suppl. 4):S545-S549.

    171. [171]

      Kelleher-Andersson J.. Discovery of neurogenic, alzheimer's disease therapeutics[J]. Curr. Alzheimer Res., 2006,3(1):55-62. doi: 10.2174/156720506775697179

    172. [172]

      Boada M., Ortiz P., Anaya F., Hernandez I.. Amyloid-targeted therapeutics in alzheimer's disease:Use of human albumin in plasma exchange as a novel approach for a beta mobilization[J]. Drug News Perspect., 2009,22(6):325-339. doi: 10.1358/dnp.2009.22.6.1395256

    173. [173]

      Shvaloff A., Neuman E., Guez D.. Lines of therapeutics research in alzheimer's disease[J]. Psychopharmacol. Bull., 1996,32(3):343-352.  

    174. [174]

      Hardy J., Selkoe D. J.. Medicine-he amyloid hypothesis of alzheimer's disease:Progress and problems on the road to therapeutics[J]. Science, 2002,297(5580):353-356. doi: 10.1126/science.1072994

    175. [175]

      Dennis J., Selkoe M. D.. The therapeutics of Alzheimer's disease:Where we stand and where we are heading[J]. Ann. Neurol., 2013,74(3):328-336. doi: 10.1002/ana.v74.3

    176. [176]

      Horwich A. L.. Molecular chaperones in cellular protein folding:The birth of a field[J]. Cell, 2014,157(2):285-288. doi: 10.1016/j.cell.2014.03.029

    177. [177]

      Baneyx F., Thomas J. G.. Collaboration of major and minor molecular chaperones in cellular protein folding[J]. Abstracts of Papers of the American Chemical Society., 2000,219:U179-U180.

    178. [178]

      Huang F., Wang J. Z., Qu A. T., Shen L. L.. Maintenance of amyloid beta peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles[J]. Angew. Chem. Int. Ed., 2014,53(34):8985-8990. doi: 10.1002/anie.201400735

    179. [179]

      Wang J., Song Y., Sun P., An Y.. Reversible interactions of proteins with mixed shell polymeric micelles:Tuning the surface hydrophobic/hydrophilic balance toward efficient artificial chaperones[J]. Langmuir, 2016,32(11):2737-2749. doi: 10.1021/acs.langmuir.6b00356

    180. [180]

      Huang F., Shen L., Wang J., Qu A.. Effect of the surface charge of artificial chaperones on the refolding of thermally denatured lysozymes[J]. ACS Appl. Mater. Interfaces, 2016,8(6):3669-3678. doi: 10.1021/acsami.5b08843

    181. [181]

      Wang J., Yin T., Huang F., Song Y.. Artificial chaperones based on mixed shell polymeric micelles:Insight into the mechanism of the interaction of the chaperone with substrate proteins using forster resonance energy transfer[J]. ACS Appl. Mater. Interfaces, 2015,7(19):10238-10249. doi: 10.1021/acsami.5b00684

    182. [182]

      Watanabe K., Nakamura K., Akikusa S., Okada T.. Inhibitors of fibril formation and cytotoxicity of beta-amyloid peptide composed of KLVFF recognition element and flexible hydrophilic disrupting element[J]. Biochem. Biophys. Res. Commun., 2002,290(1):121-124. doi: 10.1006/bbrc.2001.6191

    183. [183]

      Tjernberg L. O., Naslund J., Lindqvist F., Johansson J.. Arrest of beta-amyloid fibril formation by a pentapeptide ligand[J]. J. Biol. Chem., 1996,271(15):8545-8. doi: 10.1074/jbc.271.15.8545

    184. [184]

      Liu F. F., Du W. J., Sun Y., Zheng J.. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-beta protein[J]. Front. Chem. Sci. Eng., 2014,8(4):433-444. doi: 10.1007/s11705-014-1454-6

    185. [185]

      Qu A. T., Huang F., Li A., Yang H. R.. The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity[J]. Chem. Commun., 2017,53(7):1289-1292. doi: 10.1039/C6CC07803F

    186. [186]

      Vonghia L., Leggio L., Ferrulli A., Bertini M.. Acute alcohol intoxication[J]. Eur. J. Intern. Med., 2008,19(8):561-567. doi: 10.1016/j.ejim.2007.06.033

    187. [187]

      Kantrow S. P., Shen Z., Zhang P., Ramsey J.. Acute alcohol intoxication, lung permeability and host defense[J]. Alcohol. Clin. Exp. Res., 2008,32(6):172a-172a.

    188. [188]

      Gerstman M. D., Merry A. F., McIlroy D. R., Hannam J. A.. Acute alcohol intoxication and bispectral index monitoring[J]. Acta Anaesth. Scand., 2015,59(8):1015-1021. doi: 10.1111/aas.2015.59.issue-8

    189. [189]

      Sellers E. M., Kalant H.. Drug-therapy-alcohol intoxication and withdrawal[J]. New Eng. J. of Med., 1976,294(14):757-762. doi: 10.1056/NEJM197604012941405

    190. [190]

      Robertson C. C., Sellers E. M.. Alcohol intoxication and alcohol withdrawal syndrome[J]. Postgrad. Med., 1978,64(6):133-138. doi: 10.1080/00325481.1978.11715005

    191. [191]

      Sellers E. M., Kalant H.. Alcohol intoxication and withdrawal[J]. New. Engl. J. Med., 1976,294(14):757-762. doi: 10.1056/NEJM197604012941405

    192. [192]

      Shpilenya L. S., Muzychenko A. P., Gasbarrini G., Addolorato G.. Metadoxine in acute alcohol intoxication:A double-blind, randomized, placebo-controlled study[J]. Alcohol. Clin. Exp. Res., 2002,26(3):340-346. doi: 10.1111/acer.2002.26.issue-3

    193. [193]

      Liu Y., Du J. J., Yan M., Lau M. Y.. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nat. Nanotechnol., 2013,8(3):187-192. doi: 10.1038/nnano.2012.264

    194. [194]

      Munoz-Bonilla A., Fernandez-Garcia M.. Polymeric materials with antimicrobial activity[J]. Prog. Polym. Sci., 2012,37(2):281-339. doi: 10.1016/j.progpolymsci.2011.08.005

    195. [195]

      Pelgrift R. Y., Friedman A. J.. Nanotechnology as a therapeutic tool to combat microbial resistance[J]. Adv. Drug Deliv. Rev., 2013,65(13-14):1803-1815. doi: 10.1016/j.addr.2013.07.011

    196. [196]

      Zhang L., Pornpattananangkul D., Hu C. M. J., Huang C. M.. Development of nanoparticles for antimicrobial drug delivery[J]. Currt. Med. Chem., 2010,17(6):585-594. doi: 10.2174/092986710790416290

    197. [197]

      Zhang Y., Chan H. F., Leong K. W.. Advanced materials and processing for drug delivery:the past and the future[J]. Adv. Drug Deliv. Rev., 2013,65(1):104-120. doi: 10.1016/j.addr.2012.10.003

    198. [198]

      Peltonen L. I., Kinnari T. J., Aarnisalo A. A., Kuusela P.. Comparison of bacterial adherence to polylactides, silicone, and titanium[J]. Acta Oto-Laryngologica, 2007,127(6):587-593. doi: 10.1080/00016480600987792

    199. [199]

      Kornman K. S.. Controlled-release local delivery antimicrobials in periodontics:prospects for the future[J]. J Periodontol., 1993,64(8 Suppl):782-791.  

    200. [200]

      Smith A. W.. Biofilms and antibiotic therapy:Is there a role for combating bacterial resistance by the use of novel drug delivery systems?[J]. Adv. Drug Deliv. Rev., 2005,57(10):1539-1550. doi: 10.1016/j.addr.2005.04.007

    201. [201]

      Hittinger M., Juntke J., Kletting S., Schneider-Daum N.. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models[J]. Adv. Drug Deliv. Rev., 2015,85:44-56. doi: 10.1016/j.addr.2014.10.011

    202. [202]

      Arthur T. D., Cavera V. L., Chikindas M. L.. On bacteriocin delivery systems and potential applications[J]. Future Microbiol., 2014,9(2):235-248. doi: 10.2217/fmb.13.148

    203. [203]

      Herbrecht R., Denning D. W., Patterson T. F., Bennett J. E.. Voriconazole versus amphotericin b for primary therapy of invasive aspergillosis[J]. New Engl. J. Med., 2002,347(6):408-415. doi: 10.1056/NEJMoa020191

    204. [204]

      Walsh T. J., Teppler H., Donowitz G. R., Maertens J. A.. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia[J]. New Engl. J. Med., 2004,351(14):1391-1402. doi: 10.1056/NEJMoa040446

    205. [205]

      Kim H. J., Jones M. N.. The delivery of benzyl penicillin to staphylococcus aureus biofilms by use of liposomes[J]. J. Liposome Res., 2004,14(3-4):123-139. doi: 10.1081/LPR-200029887

    206. [206]

      Pinto-Alphandary H., Andremont A., Couvreur P.. Targeted delivery of antibiotics using liposomes and nanoparticles:Research and applications[J]. Int. J. Antimicrob. Agents, 2000,13(3):155-168. doi: 10.1016/S0924-8579(99)00121-1

    207. [207]

      Onyeji C. O., Nightingale C. H., Marangos M. N.. Enhanced killing of methicillin-resistant staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin[J]. Infection, 1994,22(5):338-342. doi: 10.1007/BF01715542

    208. [208]

      Schumacher I., Margalit R.. Liposome-encapsulated ampicillin:Physicochemical and antibacterial properties[J]. J. Pharm. Sci., 1997,86(5):635-641. doi: 10.1021/js9503690

    209. [209]

      Huang F., Gao Y., Zhang Y., Cheng T.. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity[J]. ACS Appl. Mater. Interfaces, 2017,9(20):16881-16890.  

    210. [210]

      Chu L., Gao H., Cheng T., Zhang Y.. A charge-adaptive nanosystem for prolonged enhanced in vivo antibiotic delivery[J]. Chem. Commun., 2016,52(37):6265-6268. doi: 10.1039/C6CC01269H

    211. [211]

      Shah L. K., Amiji M. M.. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS[J]. Pharm. Res., 2006,23(11):2638-2645. doi: 10.1007/s11095-006-9101-7

    212. [212]

      Mosqueira V. C. F., Loiseau P. M., Bories C., Legrand P.. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in plasmodium berghei-infected mice[J]. Antimicrob. Agents Ch., 2004,48(4):1222-1228. doi: 10.1128/AAC.48.4.1222-1228.2004

    213. [213]

      Liu Y., Busscher H. J., Zhao B. R., Li Y.. F[J]. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano, 2016,10(4):4779-4789.  

    214. [214]

      Li Y. M., Liu G. H., Wang X. R., Hu J. M.. Enzyme-responsive polymeric vesicles for bacterial-strainselective delivery of antimicrobial agents[J]. Angew. Chem. Int. Ed., 2016,55(5):1760-1764. doi: 10.1002/anie.201509401

    215. [215]

      Hasan J., Crawford R. J., Lvanova E. P.. Antibacterial surfaces:the quest for a new generation of biomaterials[J]. Trends Biotechnol., 2013,31(5):31-40.  

    216. [216]

      Insua I., Liamas E., Zhang Z. Y., Peacock A. F. A.. Enzyme-responsive polyion complex (PIC) nanoparticles for the targeted delivery of antimicrobial polymers[J]. Polym. Chem., 2016,7(15):2684-2690. doi: 10.1039/C6PY00146G

  • 加载中
    1. [1]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    2. [2]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    7. [7]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    11. [11]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    14. [14]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    15. [15]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    16. [16]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    17. [17]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    20. [20]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

Metrics
  • PDF Downloads(0)
  • Abstract views(765)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return