Citation: Hui Li, Bai-Ru Ai, Miao Hong. Stereoselective Ring-opening Polymerization of rac-Lactide by Bulky Chiral and Achiral N-heterocyclic Carbenes[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 231-236. doi: 10.1007/s10118-018-2071-5 shu

Stereoselective Ring-opening Polymerization of rac-Lactide by Bulky Chiral and Achiral N-heterocyclic Carbenes

  • Corresponding author: Miao Hong, miaohong@sioc.ac.cn
  • Received Date: 26 September 2017
    Accepted Date: 21 October 2017
    Available Online: 27 November 2017

  • Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA), well-controlled stereoselective rac-LA ROP by organic catalyst still remains a scientific challenge. Here we report our investigations into organocatalytic stereoselective ROP of rac-LA by utilizing novel bulky chiral and achiral N-heterocyclic carbenes (NHC), 1, 3-bis-(1'-naphthylethyl)imidazolin-2-ylidene. The effect of polymerization conditions (e.g. solvent, temperature, alcohol initiator) on ROP behavior by these bulky NHCs has been fully studied, leading to the formation of isotactic-rich stereoblock polylactide (Pi=0.81) under optimized conditions with high activity (Conv.=98% in 30 min) and narrow molecular weight dispersity (Đ=1.05).
  • 加载中
    1. [1]

      Auras, R., "Poly(lactic acid) in encyclopedia of polymer science and technology, Vol. 10", ed. by Mark, H. F., Wiley, Hoboken, 2014, p. 165.

    2. [2]

      Stanford M. J., Dove A. P.. Stereocontrolled ring-opening polymerisation of lactide[J]. Chem. Soc. Rev., 2010,39(2):486-494. doi: 10.1039/B815104K

    3. [3]

      Thomas C. M.. Stereocontrolled ring-opening polymerization of cyclic esters:synthesis of new polyester microstructures[J]. Chem. Soc. Rev., 2010,39(20):165-173.  

    4. [4]

      Carpentier J. F.. Rare-earth complexes supported by tripodal tetradentate bis(phenolate) ligands:a privileged class of catalysts for ring-opening polymerization of cyclic esters[J]. Organometallics, 2015,34(17):4175-4189. doi: 10.1021/acs.organomet.5b00540

    5. [5]

      Sauer A., Kapelski A., Fliedel C., Dagorne S., Kol M., Okuda J.. Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers[J]. Dalton Trans., 2013,42(25):9007-9023. doi: 10.1039/c3dt00010a

    6. [6]

      O'Keefe B. J., Hillmyer M. A., Tolman W.. Polymerization of lactide and related cyclic esters by discrete metal complexes[J]. J. Chem. Soc., Dalton Trans., 2001,15(15):2215-2224.  

    7. [7]

      Dechy-Cabaret O., Martin-Vaca B., Bourissou D.. Controlled ring-opening polymerization of lactide and glycolide[J]. Chem. Rev., 2004,104(12):6147-6176. doi: 10.1021/cr040002s

    8. [8]

      Carpentier J. F.. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones[J]. Macromol. Rapid Commun., 2010,31(19):1696-1705. doi: 10.1002/marc.v31:19

    9. [9]

      Jérôme C., Lecomte P.. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization[J]. Adv. Drug Delivery. Rev., 2008,60(9):1056-1076. doi: 10.1016/j.addr.2008.02.008

    10. [10]

      Wu J., Yu T. L., Chen C. T., Lin C. C.. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters[J]. Coord. Chem. Rev., 2006,250(5):602-626.  

    11. [11]

      Ovitt T. M., Coates G. W.. Stereoselective ring-opening polymerization of meso-lactide:synthesis of syndiotactic poly(lactic acid)[J]. J. Am. Chem. Soc., 1999,121(16):4072-4073. doi: 10.1021/ja990088k

    12. [12]

      Rosen T., Goldberg I., Venditto V., Kol M.. Tailor-made stereoblock copolymers of poly(lactic acid) by a truly living polymerization catalyst[J]. J. Am. Chem. Soc., 2016,138(37):12041-12044. doi: 10.1021/jacs.6b07287

    13. [13]

      Myers D., White A. J. P., Forsyth C. M., Bown M., Williams C. K.. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations[J]. Angew. Chem. Int. Ed., 2017,56(19):5277-5282. doi: 10.1002/anie.201701745

    14. [14]

      Xu T. Q., Yang G. W., Liu C., Lu X. B.. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide[J]. Macromolecules, 2017,50(2):515-522. doi: 10.1021/acs.macromol.6b02439

    15. [15]

      Robert C., Schmid T. E., Richard V., Haquette P., Raman S. K., Rager M., Gauvin R. M., Morin Y., Trivelli X., Guérineau V., Rosal I., Maron L., Thomas C. M.. Mechanistic aspects of the polymerization of lactide using a highly efficient aluminum(Ⅲ) catalytic system[J]. J. Am. Chem. Soc., 2017,139(17):6217-6225. doi: 10.1021/jacs.7b01749

    16. [16]

      Douglas A. F., Patrick B. O., Mehrkhodavandi P.. A highly active and site selective indium catalyst for lactide polymerization[J]. Angew. Chem. Int. Ed., 2008,47(12):2290-2293. doi: 10.1002/(ISSN)1521-3773

    17. [17]

      Bakewell C., White A. J. P., Long N. J., Williams C. K.. Metal-size influence in iso-selective lactide polymerization[J]. Angew. Chem. Int. Ed., 2014,53(35):9226-9230. doi: 10.1002/anie.201403643

    18. [18]

      Mou Z., Liu B., Wang M. Y., Xie H. Y., Li P., Li L., Li S. H., Cui D. M.. Isoselective ring-opening polymerization of rac-lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes[J]. Chem. Commun., 2014,50(77):11411-11414. doi: 10.1039/C4CC05033A

    19. [19]

      Ovitt T. M., Coates G. W.. Stereochemistry of lactide polymerization with chiral catalysts:new opportunities for stereocontrol using polymer exchange mechanisms[J]. J. Am. Chem. Soc., 2002,124(7):1316-1326. doi: 10.1021/ja012052+

    20. [20]

      Nomura N., Ishii R., Akakura M., Aoi K.. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes:exploration of a chain-end control mechanism[J]. J. Am. Chem. Soc., 2002,124(21):5938-5939. doi: 10.1021/ja0175789

    21. [21]

      Kiesewetter M. K., Shin E. J., Hedrick J. L., Waymouth R. M.. Organocatalysis:opportunities and challenges for polymer synthesis[J]. Macromolecules, 2010,43(43):2093-2107.

    22. [22]

      Kamber N. E., Jeong W., Waymouth R. M., Pratt R. C., Lohmeijer B. G. G., Hedrick J. L.. Organocatalytic ring-opening polymerization[J]. Chem. Rev., 2007,107(12):5813-5840. doi: 10.1021/cr068415b

    23. [23]

      Lin B. H., Waymouth R.M.. Urea anions:simple, fast, and selective catalysts for ring-opening polymerizations[J]. J. Am. Chem. Soc., 2017,139(4):1645-1652.

    24. [24]

      Zhang X. Y., Jones G. O., Hedrick J. L., Waymouth R. M.. Fast and selective ring-opening polymerizations by alkoxides[J]. Nat. Chem., 2016,8(11):1047-1053. doi: 10.1038/nchem.2574

    25. [25]

      Makiguchi K., Yamanaka T., Kakuchi T., Terada M., Satoh T.. Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide[J]. Chem. Commun., 2014,50(22):2883-2885. doi: 10.1039/C4CC00215F

    26. [26]

      Miyake G. M., Chen E. Y. X.. Cinchona alkaloids as stereoselective organocatalysts for the partial kinetic resolution polymerization of rac-lactide[J]. Macromolecules, 2011,44(11):4116-4124. doi: 10.1021/ma2007199

    27. [27]

      Zhu J. B., Chen E. Y. X.. From meso-lactide to isotactic polylactide:epimerization by B/N lewis pairs and kinetic resolution by organic catalysts[J]. J. Am. Chem. Soc., 2015,137(39):12506-12509. doi: 10.1021/jacs.5b08658

    28. [28]

      Zhang L., Nederberg F., Messman J. M., Pratt R. C., Hedrick J. L., Wade C. G.. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases[J]. J. Am. Chem. Soc., 2007,129(42):12610-12611. doi: 10.1021/ja074131c

    29. [29]

      Dove A. P., Li H. B., Pratt R. C., Lohmeijer B. G. G., Culkin D. A., Waymouth R. M., Hedrick J. L.. Stereoselective polymerization of rac-and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes[J]. Chem. Commun., 2006,27(27):2881-2883.  

    30. [30]

      Herrmann W. A., Goossen L. J., Artus G. R. J., Köcher C.. Metal complexes of chiral imidazolin-2-ylidene ligands[J]. Organometallics, 1997,16(11):2472-2477. doi: 10.1021/om960784i

    31. [31]

      Herrmann W. A., Goossen L. J., Köcher C., Artus G. R. J.. Chiral heterocylic carbenes in asymmetric homogeneous catalysis[J]. Angew. Chem. Int. Ed., 1996,35(23):2805-2807.

    32. [32]

      Coudane J., Ustariz-Peyret C., Schwach G., Vert M.. More about the stereodependence of DD and LL pair linkages during the ring-opening polymerization of racemic lactide[J]. J. Polym. Sci., Part A:Polym. Chem., 1997,35(9):1651-1658. doi: 10.1002/(ISSN)1099-0518

  • 加载中
    1. [1]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    2. [2]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    3. [3]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    4. [4]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    7. [7]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    10. [10]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    11. [11]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    12. [12]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    13. [13]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    14. [14]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    15. [15]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    16. [16]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    20. [20]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

Metrics
  • PDF Downloads(0)
  • Abstract views(899)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return