Citation: Chao Zeng, Chen-Yang Zhang, Jun-Yan Zhu, Ze-Yuan Dong. Supramolecular Polymerization Driven by the Dimerization of Single-stranded Helix to Double-stranded Helix[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 261-265. doi: 10.1007/s10118-018-2058-2 shu

Supramolecular Polymerization Driven by the Dimerization of Single-stranded Helix to Double-stranded Helix

  • Corresponding author: Ze-Yuan Dong, zdong@jlu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 1 September 2017
    Accepted Date: 7 October 2017
    Available Online: 21 November 2017

  • We reported a type of strong and highly directional non-covalent interactions based on the dimerization of single-stranded helix to double-stranded helix that can achieve supramolecular polymerization, giving rise to the formation of linear supramolecular polymers.
  • 加载中
    1. [1]

      Yan X., Cook T. R., Pollock J. B., Wei P., Zhang Y., Yu Y., Huang F., Stang P. J.. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions[J]. J. Am. Chem. Soc., 2014,136:4460-4463. doi: 10.1021/ja412249k

    2. [2]

      Zhang M., Xu D., Yan X., Chen J., Dong S., Zheng B., Huang F.. Self-healing supramolecular gels formed by crown ether based host-guest interactions[J]. Angew. Chem., 2012,124:7117-7121. doi: 10.1002/ange.201203063

    3. [3]

      Nakahata M., Takashima Y., Yamaguchi H., Harada. A.. Redox-responsive self-healing materials formed from host-guest polymers.[J]. Nat. Commun., 2011,2:511-517. doi: 10.1038/ncomms1521

    4. [4]

      Sun R., Xue C., Ma X., Gao M., Tian H., Li Q.. Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4]arene) and pseudorotaxane[J]. J. Am. Chem. Soc., 2013,135:5990-5993. doi: 10.1021/ja4016952

    5. [5]

      Liu Y., Yu Y., Gao J., Wang Z., Zhang X.. Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions[J]. Angew. Chem. Int. Ed., 2010,49:6576-6579. doi: 10.1002/anie.201002415

    6. [6]

      Huang Z., Yang L., Liu Y., Wang Z., Scherman O. A., Zhang X.. Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions[J]. Angew. Chem. Int. Ed., 2014,53:5351-5355. doi: 10.1002/anie.v53.21

    7. [7]

      Chen L., Huang Z., Xu J., Wang Z., Zhang X.. Controllable supramolecular polymerization through self-sorting of aliphatic and aromatic motifs[J]. Polym. Chem., 2016,7:1397-1404. doi: 10.1039/C5PY01923K

    8. [8]

      Fouquey C., Lehn J. M., Levelut A. M.. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components[J]. Adv. Mater., 1990,2:254-257. doi: 10.1002/(ISSN)1521-4095

    9. [9]

      Sijbesma R. P., Beijer F. H., Brunsveld L., Folmer B. J. B., Hirschberg J. H. K. K., Lange R. F. M., Lowe J. K. L., Meijer E. W.. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J]. Science, 1997,278:1601-1604. doi: 10.1126/science.278.5343.1601

    10. [10]

      Corbin P. S., Zimmerman S. C.. Self-Association without regard to prototropy.A heterocycle that forms extremely stable quadruply hydrogen-bonded dimers[J]. J. Am. Chem. Soc., 1998,120:9710-9711. doi: 10.1021/ja981884d

    11. [11]

      Berl V., Schmutz M., Krische M. J., Khoury R. G., Lehn J. M.. Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays-formation, characterization, and properties[J]. Chem. Eur. J., 2002,8:1227-1244. doi: 10.1002/1521-3765(20020301)8:5<1227::AID-CHEM1227>3.0.CO;2-0

    12. [12]

      Sherrington D. C., Taskinen K. A.. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions[J]. Chem. Soc. Rev., 2001,30:83-93. doi: 10.1039/b008033k

    13. [13]

      Schmuck C., Wienand W.. Self-complementary quadruple hydrogen-bonding motifs as a functional principle:from dimeric supramolecules to supramolecular polymers[J]. Angew. Chem. Int. Ed., 2001,40:4363-4369. doi: 10.1002/1521-3773(20011203)40:23<4363::AID-ANIE4363>3.0.CO;2-8

    14. [14]

      Burattini S., Greenland B. W., Merino D. H., Weng W., Seppala J., Colquhoun H. M., Hayes W., Mackay M. E., Hamley I. W., Rowan S. J.. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions[J]. J. Am. Chem. Soc., 2010,132:12051-12058. doi: 10.1021/ja104446r

    15. [15]

      Burattini S., Colquhoun H. M., Fox J. D., Friedmann D., Greenland B. W., Harris P. J. F., Hayes W., Mackay M. E., Rowan S. J.. A self-repairing supramolecular polymer system:healability as a consequence of donor-acceptor π-π stacking interactions[J]. Chem. Commun., 2009,6717:6717-6719.  

    16. [16]

      Hoeben F. J. M., Jonkheijm P., Meijer E. W., Schenning A. P. H. J.. About supramolecular assemblies of π-conjugated systems[J]. Chem. Rev., 2005,105:1491-1546. doi: 10.1021/cr030070z

    17. [17]

      Burattini S., Greenland B. W., Hayes W., Mackay M. E., Rowan S. J., Colquhoun H. M.. A supramolecular polymer based on Tweezer-type π-π stacking interactions:molecular design for healability and enhanced toughness[J]. Chem. Mater., 2011,23:6-8. doi: 10.1021/cm102963k

    18. [18]

      Chen X. M., Liu G. F.. Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions[J]. Chem. Eur. J., 2002,8:4811-4817. doi: 10.1002/1521-3765(20021018)8:20<4811::AID-CHEM4811>3.0.CO;2-R

    19. [19]

      Wang F., Zhang J., Dong S., Shu J., Liu M., Gibson H. W., Huang F.. Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers[J]. Angew. Chem. Int. Ed., 2010,49:1090-1094. doi: 10.1002/anie.v49:6

    20. [20]

      Liu Y., Huang Z., Tan X., Wang Z., Zhang X.. Cucurbit[8]uril-based supramolecular polymers:promoting supramolecular polymerization by metal-coordination[J]. Chem. Commun., 2013,49:5766-5768. doi: 10.1039/c3cc41864b

    21. [21]

      de Hatten X., Asil D., Friend R. H., Nitschke J. R.. Aqueous self-assembly of an electroluminescent double-helical metallopolymer[J]. J. Am. Chem. Soc., 2012,134:19170-19178. doi: 10.1021/ja308055s

    22. [22]

      Kaminker R., de Hatten X., Lahav M., Lupo F., Gulino A., Evmenenko G., Dutta P., Browne C., Nitschke J. R., van der Boom M. E.. Assembly of surface-confined homochiral helicates:chiral discrimination of DOPA and unidirectional charge transfer[J]. J. Am. Chem. Soc., 2013,135:17052-17059. doi: 10.1021/ja4077205

    23. [23]

      Zhou Z., Yan X., Cook T. R., Saha M. L., Stang P. J.. Engineering functionalization in a supramolecular polymer:hierarchical self-organization of triply orthogonal non-covalent interactions on a supramolecular coordination complex platform[J]. J. Am. Chem. Soc., 2016,138:806-809. doi: 10.1021/jacs.5b12986

    24. [24]

      Yan X., Li S., Pollock J. B., Cook T. R., Chen J., Zhang Y., Ji X., Yu Y., Huang F., Stang P. J.. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces[J]. Proc. Natl. Acad. Sci. U. S. A., 2013,110:15585-15590. doi: 10.1073/pnas.1307472110

    25. [25]

      Li S. L., Xiao T., Lin C., Wang L.. Advanced supramolecular polymers constructed by orthogonal self-assembly[J]. Chem. Soc. Rev., 2012,41:5950-5968. doi: 10.1039/c2cs35099h

    26. [26]

      Zhang J., Su C.. Metal-organic gels:from discrete metallogelators to coordination polymers[J]. Coord. Chem. Rev., 2013,257:1373-1408. doi: 10.1016/j.ccr.2013.01.005

    27. [27]

      de Greef T. F. A., Smulders M. M. J., Wolffs M., Schenning A. P. H. J., Sijbesma R. P., Meijer E. W.. supramolecular polymerization[J]. Chem. Rev., 2009,109:5687-5754. doi: 10.1021/cr900181u

    28. [28]

      Whittell G. R., Hager M. D., Schubert U. S., Manners I.. Functional soft materials from metallopolymers and metallosupramolecular polymers[J]. Nat. Mater., 2011,10:176-188. doi: 10.1038/nmat2966

    29. [29]

      Aida T., Meijer E. W., Stupp S. I.. Functional supramolecular polymers[J]. Science, 2012,335:813-817. doi: 10.1126/science.1205962

    30. [30]

      Yan X., Wang F., Zheng B., Huang F.. Stimuli-responsive supramolecular polymeric materials[J]. Chem. Soc. Rev., 2012,41:6042-6065. doi: 10.1039/c2cs35091b

    31. [31]

      Appel E. A., del Barrio J., Loh X. J., Scherman O. A.. Supramolecular polymeric hydrogels[J]. Chem. Soc. Rev., 2012,41:6195-6214. doi: 10.1039/c2cs35264h

    32. [32]

      Yang L., Tan X., Wang Z., Zhang X.. Supramolecular polymers:historical development, preparation, characterization, and functions[J]. Chem. Rev., 2015,115:7196-7239. doi: 10.1021/cr500633b

    33. [33]

      Lehn J. M.. Perspectives in chemistry-aspects of adaptive chemistry and materials[J]. Angew. Chem. Int. Ed., 2015,54:3276-3289. doi: 10.1002/anie.201409399

    34. [34]

      Beijer F. H., Sijbesma R. P., Kooijman H., Spek A. L., Meijer E. W.. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding[J]. J. Am. Chem. Soc., 1998,120:6761-6769. doi: 10.1021/ja974112a

    35. [35]

      Xu J. F., Chen Y. Z., Wu D. Y., Wu L. Z., Tung C. H., Yang Q. Z.. Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit[J]. Angew. Chem. Int. Ed., 2013,52:9738-9742. doi: 10.1002/anie.201303496

    36. [36]

      Sánchez L., Martín N., Guldi D. M.. Hydrogen-bonding motifs in fullerene chemistry[J]. Angew. Chem. Int. Ed., 2005,44:5374-5382. doi: 10.1002/(ISSN)1521-3773

    37. [37]

      Rispens M. T., Sánchez L., Knol J., Hummelen J. C.. Supramolecular organization of fullerenes by quadruple hydrogen bonding[J]. Chem. Commun., 2001,2:161-162.  

    38. [38]

      González J. J., González S., Priego E. M., Luo C., Guldi D. M., de Mendoza J., Martín N.. A new approach to supramolecular C60-dimers based in quadruple hydrogen bonding[J]. Chem. Commun., 2001,2:163-164.  

    39. [39]

      Yan X., Jiang B., Cook T.R., Zhang Y., Li J., Yu Y., Huang F., Yang H. B., Stang P. J.. Dendronized organoplatinum(Ⅱ) metallacyclic polymers constructed by hierarchical coordination-driven self-assembly and hydrogen-bonding interfaces[J]. J. Am. Chem. Soc., 2013,135:16813-16816. doi: 10.1021/ja4092193

    40. [40]

      Zhang, Z. ; Luo, Y. ; Chen, J. ; Dong, S. ; Yu, Y. ; Ma, Z. ; Huang, F. Formation of linear supramolecular polymers that is driven by C[BOND]H π interactions in solution and in the solid state. Angew. Chem. 2011, 123, 1433-1437.

    41. [41]

      Lehn J. M.. Perspectives in chemistry-aspects of adaptive chemistry and materials[J]. Angew. Chem. Int. Ed., 2015,54:3276-3289. doi: 10.1002/anie.201409399

    42. [42]

      Kang J., Miyajima D., Mori T., Inoue Y., Itoh Y., Aida T.. A rational strategy for the realization of chain-growth supramolecular polymerization[J]. Science, 2015,347:646-651. doi: 10.1126/science.aaa4249

    43. [43]

      Singleton M. L., Pirotte G., Kauffmann B., Ferrand Y., Huc I.. Increasing the Size of an Aromatic Helical Foldamer Cavity by Strand Intercalation[J]. Angew. Chem. Int. Ed., 2014,53:13140-13144. doi: 10.1002/anie.201407752

    44. [44]

      Berl V., Huc I., Khoury R., Krische M. J., Lehn J. M.. Interconversion of single and double helices formed from synthetic molecular strands[J]. Nature, 2000,407:720-723. doi: 10.1038/35037545

    45. [45]

      Yamada H., Wu Z. Q., Furusho Y., Yashima E.. Thermodynamic and kinetic stabilities of complementary double helices utilizing amidinium-carboxylate salt bridges[J]. J. Am. Chem. Soc., 2012,134:9506-9520. doi: 10.1021/ja303701d

    46. [46]

      Yashima E., Maeda K., Furusho Y.. Single-and double-stranded helical polymers:synthesis, structures, and functions[J]. Acc. Chem. Res., 2008,41:1166-1180. doi: 10.1021/ar800091w

    47. [47]

      Zhu J. Y., Dong Z. Y., Lei S. B., Cao L. L., Yang B., Li W. F., Zhang Y. C., Liu J. Q., Shen J. C.. Design of aromatic helical polymers for STM visualization:imaging of single and double helices with a pattern of p-p stacking[J]. Angew. Chem. Int. Ed., 2015,54:3097-3101. doi: 10.1002/anie.201410975

    48. [48]

      Baptiste B., Zhu J., Haldar D., Kauffmann B., Léger J. M., Huc I.. Hybridization of long pyridine-dicarboxamide oligomers into multi-turn double helices:slow strand association and dissociation, solvent dependence, and solid state structures[J]. Chem. Asian J., 2010,5:1364-1375.  

    49. [49]

      Shang J., Gan Q., Dawson S. J., Rosu F., Jiang H., Ferrand Y., Huc I.. Self-association of aromatic oligoamide foldamers into double helices in water[J]. Org. Lett., 2014,16:4992-4995. doi: 10.1021/ol502259y

    50. [50]

      Yashima E., Ousaka N., Taura D., Shimomura K., Ikai T., Maeda K.. Supramolecular helical systems:helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions[J]. Chem. Rev., 2016,116:13752-13990. doi: 10.1021/acs.chemrev.6b00354

    51. [51]

      Lang C., Li W. F., Dong Z. Y., Zhang X., Yang F. H., Yang B., Deng X. L., Zhang C. Y., Xu J. Y., Liu J. Q.. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules[J]. Angew. Chem. Int. Ed., 2016,55:9723-9727. doi: 10.1002/anie.201604071

    52. [52]

      The length of double helix will be 2-fold longer compared to the single helix, as evidenced by X-ray structure studies, related to see Ref. 43, 44, and 48.

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    3. [3]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    4. [4]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    5. [5]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    6. [6]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    7. [7]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    8. [8]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    9. [9]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    10. [10]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    11. [11]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    12. [12]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    13. [13]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    14. [14]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    15. [15]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    16. [16]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    19. [19]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    20. [20]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

Metrics
  • PDF Downloads(0)
  • Abstract views(870)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return