-
[1]
Chow W. S., Teoh E. L.. Flexible and flame resistant poly(lactic acid)/organomontmorillonite nanocomposite[J]. J. Appl. Polym. Sci.,
2015,132(2):41253-41264.
-
[2]
Wang X., Song L., Yang H., Lu H., Hu Y.. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites[J]. Ind. Eng. Chem. Res.,
2011,50(9):5376-5383.
doi: 10.1021/ie102566y
-
[3]
Lim L. T., Auras R., Rubino M.. Processing technologies for poly(lactic acid)[J]. Prog. Polym. Sci.,
2008,33(8):820-852.
doi: 10.1016/j.progpolymsci.2008.05.004
-
[4]
Wang C. F., Xie H. Y., Cheng Y. P., Chen L., Hu M. Z., Chen S.. Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films[J]. Colloid. Polym. Sci.,
2011,289(4):395-400.
doi: 10.1007/s00396-011-2377-0
-
[5]
Shi X., Zhang G., Phuong T. V., Lazzeri A.. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid)[J]. Molecules,
2015,20(1):1579-1593.
doi: 10.3390/molecules20011579
-
[6]
Mohapatra A. K., Mohanty S., Nayak S. K.. Study of thermo-mechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites[J]. J. Polym. Environ.,
2014,22(3):398-408.
doi: 10.1007/s10924-014-0639-x
-
[7]
Suksu t B., Deeprasertkul C.. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber[J]. J. Polym. Environ.,
2011,19(1):288-296.
doi: 10.1007/s10924-010-0278-9
-
[8]
Gavgani J. N., Adelnia H., Sadeghi G. M. M., Zafari F.. Intumescent flame retardant polyurethane/starch composites:thermal, mechanical, and rheological properties[J]. J. Appl. Polym. Sci.,
2014,131(23):41158-41166.
-
[9]
Cheng K. C., Lin Y. H., Guo W., Hwang T., Don T. M.. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers[J]. J. Mater. Sci.,
2015,50(4):1605-1612.
doi: 10.1007/s10853-014-8721-2
-
[10]
Murariu M., Bonnaud L., Yoann P., Fontaine G., Bourbigot S., Dubois P.. New trends in polylactide (PLA)-based materials:"Green" PLA-calcium sulfate (nano)composites tailored with flame retardant properties[J]. Polym. Degrad. Stab.,
2010,95(3):374-381.
doi: 10.1016/j.polymdegradstab.2009.11.032
-
[11]
Tang G., Wang X., Xing W., Zhang P., Wang B., Hong N., Yang W., Hu Y., Song L.. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite[J]. Ind. Eng. Chem. Res.,
2012,51(37):12009-12016.
doi: 10.1021/ie3008133
-
[12]
Tang G., Zhang R., Wang X., Wang B., Song L., Hu Y., Gong X.. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite[J]. J. Macromol. Sci.,
2013,50(2):255-269.
doi: 10.1080/10601325.2013.742835
-
[13]
Li S., Yuan H., Yu T., Yuan W., Ren J.. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid)[J]. Polym. Adv. Technol.,
2009,20(12):1114-1120.
doi: 10.1002/pat.v20:12
-
[14]
Bourbigot S., Duquesne S., Fontaine G., Bellayer S., Turf T., Samyn F.. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants[J]. Mol. Cryst. Liq. Cryst.,
2008,486(1):1367-1381.
-
[15]
Wang X., Hu Y., Song L., Xuan S., Xing W., Bai Z., Lu H.. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites[J]. Ind. Eng. Chem. Res.,
2011,50:713-720.
doi: 10.1021/ie1017157
-
[16]
Bras M. L., Bourbigot S., Tallec Y. L., Laureyns J.. Synergy in intumescence-application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations[J]. Polym. Degrad. Stab.,
1997,56(1):11-21.
doi: 10.1016/S0141-3910(96)00190-5
-
[17]
Zhan J., Song L., Nie S., Hu Y.. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant[J]. Polym. Degrad. Stab.,
2009,94(3):291-296.
doi: 10.1016/j.polymdegradstab.2008.12.015
-
[18]
Wu K., Shen M. M., Hu Y., Xing W., Wang X.. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite[J]. J. Therm. Anal. Calorim.,
2011,104(3):1083-1090.
doi: 10.1007/s10973-011-1380-5
-
[19]
Yang H., Song L., Tai Q., Wang X., Yu B., Yuan Y., Hu Y., Yuen R. K. K.. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites[J]. Polym. Degrad. Stab.,
2014,105:248-256.
doi: 10.1016/j.polymdegradstab.2014.04.021
-
[20]
Lai X., Zeng X., Li H., Liao F., Zhang H., Yin C.. Preparation and properties of flame retardant polypropylene with an intumescent system encapsulated by thermoplastic polyurethane[J]. J. Macromol. Sci.,
2012,51(1):35-47.
doi: 10.1080/00222348.2011.564099
-
[21]
Bourbigot S., Bras M. L., Duquesne S., Rochery M.. Recent Advances for Intumescent Polymers[J]. Macromol. Mater. Eng.,
2004,289(6):499-511.
doi: 10.1002/(ISSN)1439-2054
-
[22]
Fox, D. M. ; Lee, J. ; Ford, E. ; Balsley, E. ; Zammarano, M. ; Matko, S. ; Gilman, J. W. POSS modified cellulose for improving flammability characteristics of polystyrene. in '10th international conference on wood & biofiber plastic composites. Wisconsin, USA', 2009, 337-342.
-
[23]
Wang J., Dong X. Y., Hao W.L., Yi Z., Xi G., Ding W.. Application properties of TCP/OMMT flame retardant system in NR composites[J]. J. Elastom. Plast.,
2012,45(2):107-119.
-
[24]
Calderon J. U., Lennox B., Kamai M. R.. Thermally stable phosphonium-montmorillonite organoclays[J]. Appl. Clay. Sci.,
2008,40(1-4):90-98.
doi: 10.1016/j.clay.2007.08.004
-
[25]
Famg S., Hu Y., Song L., Wu J.. Preparation and investigation of ethylene-vinyl acetate copolymer/silicone rubber/clay nanocomposites[J]. Polym. Plast. Technol. Eng.,
2008,47(1):752-761.
-
[26]
Wu Y., Huang H., Zhao W., Zhang H., Wang Y., Zhang L.. Flame retardance of montmorillonite/rubber composites[J]. J. Appl. Polym. Sci.,
2007,107(5):3318-3324.
-
[27]
Zhang X., Zhang Y.. Reinforcement effect of poly(butylene succinate) (PBS)-graftedcellulose nanocrystal on toughened PBS/polylactic acid blends[J]. Carbohydr. Polym.,
2016,140:374-382.
doi: 10.1016/j.carbpol.2015.12.073
-
[28]
Pivsa-Art W., Fujii K., Nomura K., Aso Y., Ohara H., Yamane H.. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate)[J]. J. Appl. Polym. Sci.,
2016,133(8):43044-43053.
-
[29]
Oyama H. T.. Super-tough poly(lactic acid) materials:reactive blending with ethylene copolymer[J]. Polymer,
2009,50(3):747-751.
doi: 10.1016/j.polymer.2008.12.025
-
[30]
Buenaventutada P., Calabia P., Ninomiya F., Yagi H., Oishi A., Taguchi K., Kunioka M., Funabashi K.. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent[J]. Polymers,
2013,5(1):128-141.
doi: 10.3390/polym5010128
-
[31]
Pan P., Kai W., Zhu B., Dong T., Inoue Y.. Polymorphous crystallization and multiple melting behavior of poly(L-lactide):molecular weight dependence[J]. Macromolecules,
2007,40(19):6896-6905.
-
[32]
Tábil T., Sajó I. E., Szabó1 F., Luyt A. S., Kovács J. K.. Crystalline structure of annealed polylactic acid and its relation to processing[J]. Express Polym. Lett.,
2010,4:659-668.
doi: 10.3144/expresspolymlett.2010.80
-
[33]
Battegazzore D., Bocchini S., Frache A.. Crystallization kinetics of poly(lactic acid)-talc composites[J]. Express Polym. Lett.,
2011,5(10):849-858.
doi: 10.3144/expresspolymlett.2011.84
-
[34]
Lee J. H., Park T. G., Park H. S., Lee D. S., Lee Y. K., Yoon S. C., Nam J. D.. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold[J]. Biomaterials,
2003,24:2773-2778.
doi: 10.1016/S0142-9612(03)00080-2
-
[35]
Ray S. S., Maiti P., Okamoto M., Yamada K., Ueda K.. New polylactide/layered silicate nanocomposites.1.Preparation, characterization, and properties[J]. Macromolecules,
2002,35(8):3104-3110.
doi: 10.1021/ma011613e
-
[36]
Zhou J., Yao Z., Zhou C., Wei D., Li S.. Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite[J]. J. Appl. Polym. Sci.,
2014,131(18):40773-40781.
-
[37]
Shyang C. W., Kuen L.S.. Flexural, morphological and thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposite[J]. Polym. Polym. Compos.,
2008,16(4):263-270.
-
[38]
Dasari A., Yu Z. Z., Cai G. P., Mai Y. W.. Recent developments in the fire retardancy of polymericmaterials[J]. Prog. Polym. Sci.,
2013,38(9):1357-1387.
doi: 10.1016/j.progpolymsci.2013.06.006