Citation: Tunsuda Suparanon, Jiratchaya Surisaeng, Neeranuch Phusunti, Worasak Phetwarotai. Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 620-631. doi: 10.1007/s10118-018-2043-9 shu

Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends

  • Corresponding author: Worasak Phetwarotai, w.phetwarotai@hotmail.com
  • Received Date: 12 July 2017
    Accepted Date: 12 September 2017
    Available Online: 11 January 2018

  • The main aim of this research was to investigate the synergistic influence of additives and poly(butylene succinate) (PBS) in improving both the mechanical and flame retardant properties of polylactide (PLA) blends. Tricresyl phosphate (TCP) and montmorillonite (MMT) were the additives used to improve the mechanical characteristics and fire resistance of PLA. Differential scanning calorimetry (DSC) thermograms revealed that the addition of TCP and MMT significantly affected their thermal behaviors. The results of the mechanical and morphological characterizations were in agreement with the changes in thermal behavior. The impact strength and limiting oxygen index (LOI) value of PLA significantly increased with the presence of PBS. The failure mode of the blends as evidenced by scanning electron microscopy (SEM) changed from brittle to ductile. The addition of TCP and MMT produced excellent anti-dripping and self-extinguishing behaviors of the blends, achieving Ⅴ-0 rating. For the PLA/PBS blends, the synergistic combination of PBS and additives led to an acceleration of cold crystallization, a significant increment of flexibility and impact toughness, and an improvement of flame retardancy.
  • 加载中
    1. [1]

      Chow W. S., Teoh E. L.. Flexible and flame resistant poly(lactic acid)/organomontmorillonite nanocomposite[J]. J. Appl. Polym. Sci., 2015,132(2):41253-41264.  

    2. [2]

      Wang X., Song L., Yang H., Lu H., Hu Y.. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites[J]. Ind. Eng. Chem. Res., 2011,50(9):5376-5383. doi: 10.1021/ie102566y

    3. [3]

      Lim L. T., Auras R., Rubino M.. Processing technologies for poly(lactic acid)[J]. Prog. Polym. Sci., 2008,33(8):820-852. doi: 10.1016/j.progpolymsci.2008.05.004

    4. [4]

      Wang C. F., Xie H. Y., Cheng Y. P., Chen L., Hu M. Z., Chen S.. Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films[J]. Colloid. Polym. Sci., 2011,289(4):395-400. doi: 10.1007/s00396-011-2377-0

    5. [5]

      Shi X., Zhang G., Phuong T. V., Lazzeri A.. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid)[J]. Molecules, 2015,20(1):1579-1593. doi: 10.3390/molecules20011579

    6. [6]

      Mohapatra A. K., Mohanty S., Nayak S. K.. Study of thermo-mechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites[J]. J. Polym. Environ., 2014,22(3):398-408. doi: 10.1007/s10924-014-0639-x

    7. [7]

      Suksu t B., Deeprasertkul C.. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber[J]. J. Polym. Environ., 2011,19(1):288-296. doi: 10.1007/s10924-010-0278-9

    8. [8]

      Gavgani J. N., Adelnia H., Sadeghi G. M. M., Zafari F.. Intumescent flame retardant polyurethane/starch composites:thermal, mechanical, and rheological properties[J]. J. Appl. Polym. Sci., 2014,131(23):41158-41166.  

    9. [9]

      Cheng K. C., Lin Y. H., Guo W., Hwang T., Don T. M.. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers[J]. J. Mater. Sci., 2015,50(4):1605-1612. doi: 10.1007/s10853-014-8721-2

    10. [10]

      Murariu M., Bonnaud L., Yoann P., Fontaine G., Bourbigot S., Dubois P.. New trends in polylactide (PLA)-based materials:"Green" PLA-calcium sulfate (nano)composites tailored with flame retardant properties[J]. Polym. Degrad. Stab., 2010,95(3):374-381. doi: 10.1016/j.polymdegradstab.2009.11.032

    11. [11]

      Tang G., Wang X., Xing W., Zhang P., Wang B., Hong N., Yang W., Hu Y., Song L.. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite[J]. Ind. Eng. Chem. Res., 2012,51(37):12009-12016. doi: 10.1021/ie3008133

    12. [12]

      Tang G., Zhang R., Wang X., Wang B., Song L., Hu Y., Gong X.. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite[J]. J. Macromol. Sci., 2013,50(2):255-269. doi: 10.1080/10601325.2013.742835

    13. [13]

      Li S., Yuan H., Yu T., Yuan W., Ren J.. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid)[J]. Polym. Adv. Technol., 2009,20(12):1114-1120. doi: 10.1002/pat.v20:12

    14. [14]

      Bourbigot S., Duquesne S., Fontaine G., Bellayer S., Turf T., Samyn F.. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants[J]. Mol. Cryst. Liq. Cryst., 2008,486(1):1367-1381.  

    15. [15]

      Wang X., Hu Y., Song L., Xuan S., Xing W., Bai Z., Lu H.. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites[J]. Ind. Eng. Chem. Res., 2011,50:713-720. doi: 10.1021/ie1017157

    16. [16]

      Bras M. L., Bourbigot S., Tallec Y. L., Laureyns J.. Synergy in intumescence-application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations[J]. Polym. Degrad. Stab., 1997,56(1):11-21. doi: 10.1016/S0141-3910(96)00190-5

    17. [17]

      Zhan J., Song L., Nie S., Hu Y.. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant[J]. Polym. Degrad. Stab., 2009,94(3):291-296. doi: 10.1016/j.polymdegradstab.2008.12.015

    18. [18]

      Wu K., Shen M. M., Hu Y., Xing W., Wang X.. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite[J]. J. Therm. Anal. Calorim., 2011,104(3):1083-1090. doi: 10.1007/s10973-011-1380-5

    19. [19]

      Yang H., Song L., Tai Q., Wang X., Yu B., Yuan Y., Hu Y., Yuen R. K. K.. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites[J]. Polym. Degrad. Stab., 2014,105:248-256. doi: 10.1016/j.polymdegradstab.2014.04.021

    20. [20]

      Lai X., Zeng X., Li H., Liao F., Zhang H., Yin C.. Preparation and properties of flame retardant polypropylene with an intumescent system encapsulated by thermoplastic polyurethane[J]. J. Macromol. Sci., 2012,51(1):35-47. doi: 10.1080/00222348.2011.564099

    21. [21]

      Bourbigot S., Bras M. L., Duquesne S., Rochery M.. Recent Advances for Intumescent Polymers[J]. Macromol. Mater. Eng., 2004,289(6):499-511. doi: 10.1002/(ISSN)1439-2054

    22. [22]

      Fox, D. M. ; Lee, J. ; Ford, E. ; Balsley, E. ; Zammarano, M. ; Matko, S. ; Gilman, J. W. POSS modified cellulose for improving flammability characteristics of polystyrene. in '10th international conference on wood & biofiber plastic composites. Wisconsin, USA', 2009, 337-342.

    23. [23]

      Wang J., Dong X. Y., Hao W.L., Yi Z., Xi G., Ding W.. Application properties of TCP/OMMT flame retardant system in NR composites[J]. J. Elastom. Plast., 2012,45(2):107-119.  

    24. [24]

      Calderon J. U., Lennox B., Kamai M. R.. Thermally stable phosphonium-montmorillonite organoclays[J]. Appl. Clay. Sci., 2008,40(1-4):90-98. doi: 10.1016/j.clay.2007.08.004

    25. [25]

      Famg S., Hu Y., Song L., Wu J.. Preparation and investigation of ethylene-vinyl acetate copolymer/silicone rubber/clay nanocomposites[J]. Polym. Plast. Technol. Eng., 2008,47(1):752-761.  

    26. [26]

      Wu Y., Huang H., Zhao W., Zhang H., Wang Y., Zhang L.. Flame retardance of montmorillonite/rubber composites[J]. J. Appl. Polym. Sci., 2007,107(5):3318-3324.  

    27. [27]

      Zhang X., Zhang Y.. Reinforcement effect of poly(butylene succinate) (PBS)-graftedcellulose nanocrystal on toughened PBS/polylactic acid blends[J]. Carbohydr. Polym., 2016,140:374-382. doi: 10.1016/j.carbpol.2015.12.073

    28. [28]

      Pivsa-Art W., Fujii K., Nomura K., Aso Y., Ohara H., Yamane H.. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate)[J]. J. Appl. Polym. Sci., 2016,133(8):43044-43053.  

    29. [29]

      Oyama H. T.. Super-tough poly(lactic acid) materials:reactive blending with ethylene copolymer[J]. Polymer, 2009,50(3):747-751. doi: 10.1016/j.polymer.2008.12.025

    30. [30]

      Buenaventutada P., Calabia P., Ninomiya F., Yagi H., Oishi A., Taguchi K., Kunioka M., Funabashi K.. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent[J]. Polymers, 2013,5(1):128-141. doi: 10.3390/polym5010128

    31. [31]

      Pan P., Kai W., Zhu B., Dong T., Inoue Y.. Polymorphous crystallization and multiple melting behavior of poly(L-lactide):molecular weight dependence[J]. Macromolecules, 2007,40(19):6896-6905.  

    32. [32]

      Tábil T., Sajó I. E., Szabó1 F., Luyt A. S., Kovács J. K.. Crystalline structure of annealed polylactic acid and its relation to processing[J]. Express Polym. Lett., 2010,4:659-668. doi: 10.3144/expresspolymlett.2010.80

    33. [33]

      Battegazzore D., Bocchini S., Frache A.. Crystallization kinetics of poly(lactic acid)-talc composites[J]. Express Polym. Lett., 2011,5(10):849-858. doi: 10.3144/expresspolymlett.2011.84

    34. [34]

      Lee J. H., Park T. G., Park H. S., Lee D. S., Lee Y. K., Yoon S. C., Nam J. D.. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold[J]. Biomaterials, 2003,24:2773-2778. doi: 10.1016/S0142-9612(03)00080-2

    35. [35]

      Ray S. S., Maiti P., Okamoto M., Yamada K., Ueda K.. New polylactide/layered silicate nanocomposites.1.Preparation, characterization, and properties[J]. Macromolecules, 2002,35(8):3104-3110. doi: 10.1021/ma011613e

    36. [36]

      Zhou J., Yao Z., Zhou C., Wei D., Li S.. Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite[J]. J. Appl. Polym. Sci., 2014,131(18):40773-40781.  

    37. [37]

      Shyang C. W., Kuen L.S.. Flexural, morphological and thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposite[J]. Polym. Polym. Compos., 2008,16(4):263-270.  

    38. [38]

      Dasari A., Yu Z. Z., Cai G. P., Mai Y. W.. Recent developments in the fire retardancy of polymericmaterials[J]. Prog. Polym. Sci., 2013,38(9):1357-1387. doi: 10.1016/j.progpolymsci.2013.06.006

  • 加载中
    1. [1]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    2. [2]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    3. [3]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    4. [4]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    5. [5]

      Weiwei HeHongbo ZhangXudong LinLili ZhuTingting ZhengHao PeiYang TianMin ZhangGuoyue ShiLei WuJianlong ZhaoGulinuer WumaierShengqing LiYufang XuHonglin LiXuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091

    6. [6]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    7. [7]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    8. [8]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    9. [9]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    10. [10]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    11. [11]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    12. [12]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    13. [13]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    14. [14]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    15. [15]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    16. [16]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    17. [17]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    18. [18]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(0)
  • Abstract views(985)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return