Citation: Ye Wang, Ting-Ting Hu, Xiao-Long Han, Yu-Qi Wang, Ji-Ding Li. Fabrication of Cu(OH)2 Nanowires Blended Poly(vinylidene fluoride) Ultrafiltration Membranes for Oil-Water Separation[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 612-619. doi: 10.1007/s10118-018-2041-y shu

Fabrication of Cu(OH)2 Nanowires Blended Poly(vinylidene fluoride) Ultrafiltration Membranes for Oil-Water Separation

  • Corresponding author: Xiao-Long Han, hanxl@nwu.edu.cn
  • Received Date: 19 July 2017
    Accepted Date: 8 September 2017
    Available Online: 11 January 2018

  • Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride) (PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration (UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires. In addition, water flux and bovine serum albumin (BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.
  • 加载中
    1. [1]

      Low B. T., Zhao L., Merkel T. C., Weber M., Stolten D.. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas[J]. J. Membr. Sci., 2013,431(6):139-155.  

    2. [2]

      Liu S. L., Shao L., Chua M. L., Lau C. H., Wang H., Quan S.. Recent progress in the design of advanced PEO-containing membranes for CO2 removal[J]. Prog. Polym. Sci., 2013,38(7):1089-1120. doi: 10.1016/j.progpolymsci.2013.02.002

    3. [3]

      Chang X. J., Wang Z. X., Quan S., Xu Y. C., Jiang Z. X., Shao L.. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance[J]. Appl. Surf. Sci., 2014,316(1):537-548.  

    4. [4]

      Le-Clech P., Chen V., Fane T. A. G.. Fouling in membrane bioreactors used in waste water treatment[J]. J. Membr. Sci., 2006,284(1):17-53.  

    5. [5]

      Wang Z. H., Yu H. R., Xia J. F., Zhang F. F., Li F., Xia Y. Z., Li Y. H.. Novel GO-blended PVDF ultrafiltration membranes[J]. Desalination, 2012,299(8):50-54.  

    6. [6]

      Shannon M. A., Bohn P. W., Elimelech M., Georgiadis J. G., Marinas B. J., Mayes A. M.. Science and technology for water purification in the coming decades[J]. Nature, 2008,452(7185)301. doi: 10.1038/nature06599

    7. [7]

      Nurul H. I., Mohammad A. W., Markom M., Peng L. C.. Effects of palm oil-based fatty acids on fouling of ultrafiltration membranes during the clarification of glycerin-rich solution[J]. J Food. Eng., 2010,101(3):264-272. doi: 10.1016/j.jfoodeng.2010.07.006

    8. [8]

      Hashim N. A., Liu F., Li K.. A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer[J]. J. Membr. Sci., 2009,345(1-2):134-141. doi: 10.1016/j.memsci.2009.08.032

    9. [9]

      Wei Y., Chu H. Q., Dong B. Z., Li X., Xia S. J., Qiang Z. M.. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance[J]. Desalination, 2011,272(1):90-97.  

    10. [10]

      Zuo X. T., Yu S. L., Xu X., Xu J., Bao R. L., Yan X. J.. New PVDF organic-inorganic membranes:the effect of SiO2 nanoparticles content on the transport performance of anion-exchange membranes[J]. J. Membr. Sci., 2009,340(1-2):206-213. doi: 10.1016/j.memsci.2009.05.032

    11. [11]

      Liang S., Xiao K., Mo Y. H., Huang X.. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling[J]. J. Membr. Sci., 2012:394-192.  

    12. [12]

      Wang D. X., Tong F., Aerts P.. Application of the combined ultrafiltration and reverse osmosis for refinery wastewater reuse in Sinopec Yanshan Plant[J]. Desalin. Water Treat, 2011,25(1-3):133-142. doi: 10.5004/dwt.2011.1137

    13. [13]

      Yan L., Li Y. S., Xiang C. B.. Preparation of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research[J]. Polymer, 2005,46(18):7701-7706. doi: 10.1016/j.polymer.2005.05.155

    14. [14]

      Wu G. P., Gan S. Y., Cui L. Z., Xu Y. Y.. Preparation and characterization of PES/TiO2 composite membranes[J]. Appl. Surf. Sci., 2008,254(21):7080-7086. doi: 10.1016/j.apsusc.2008.05.221

    15. [15]

      Huang X., Wang W. P., Liu Y. D., Wang H., Zhang Z. B., Fan W. L., Li L.. Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes[J]. Chem. Eng. J., 2015,273:421-429. doi: 10.1016/j.cej.2015.03.086

    16. [16]

      Yang Y. N., Wang P.. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process[J]. Polymer, 2006,47(8):2683-2688. doi: 10.1016/j.polymer.2006.01.019

    17. [17]

      Xu Z. W., Wu T. F., Shi J., Wang W., Teng K. Y., Qian X. M., Shan M. J., Deng H., Tian X., Li C. Y., Li F. Y.. Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes[J]. ACS Appl. Mater. Interfaces, 2016,8(28):18418-18429. doi: 10.1021/acsami.6b04083

    18. [18]

      Zhang J. G., Xu Z. W., Mai W., Min C. Y., Zhou B. M., Shan M. J., Li Y. L., Yang C. Y., Wang Z., Qian X. M.. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials[J]. J. Mater. Chem. A, 2013,1(9):3101-3111. doi: 10.1039/c2ta01415g

    19. [19]

      Zhang J. G., Xu Z. W., Shan M. J., Zhou B. M., Li Y. L., Li B. D., Niu J. R., Qian X. M.. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes[J]. J. Membr. Sci., 2013,448(24):81-92.  

    20. [20]

      Xu Z. W., Wu T. F., Shi J., Teng K. Y., Wang W., Ma M. J., Li J., Qian X. M., Li C. Y., Fan J. T.. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment[J]. J. Membr. Sci., 2016,520:281-293. doi: 10.1016/j.memsci.2016.07.060

    21. [21]

      Long Y., Hui J. F., Wang P. P., Xiang G. L., Xu B., Hu S., Zhu W. C., Lü X. Q., Zhuang J., Wang X.. Hydrogen bond nanoscale networks showing switchable transport performance[J]. Sci. Rep., 2012,2(8). doi: 10.1038/srep00612

    22. [22]

      Zhang F., Zhang W. B., Shi Z., Wang D., Jin J., Jiang L.. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation[J]. Adv. Mater., 2013,25(30):4192-4198. doi: 10.1002/adma.201301480

    23. [23]

      Bottino A., Camera-Roda G., Capannelli G., Munari S.. The formation of microporous polyvinylidene difluoride membranes by phase separation[J]. J. Membr. Sci., 1991,57(1):1-20. doi: 10.1016/S0376-7388(00)81159-X

    24. [24]

      Wang W. Z., Lan C., Li Y. Z., Hong K. Q., Wang G. H.. A simple wet chemical route for large-scale synthesis of Cu(OH)2 nanowires[J]. Chem. Phys. Lett., 2002,366(3):220-223.  

    25. [25]

      Safarpour M., Khataee A., Vatanpour V.. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes[J]. Sep. Purif. Technol., 2015,140:32-42. doi: 10.1016/j.seppur.2014.11.010

    26. [26]

      Pagliero C., Mattea M., Ochoa N., Marchese J.. Fouling of polymeric membranes during degumming of crude sunflower and soybean oil[J]. J. Food. Eng., 2007,78(1):194-197. doi: 10.1016/j.jfoodeng.2005.09.015

    27. [27]

      Koltuniewicz A. B., Field R. W.. Process factors during removal of oil-in-water emulsions with cross-flow microfiltration[J]. Desalination, 1996,105(105):79-89.  

    28. [28]

      Yi X. S., Yu S. L., Shi W. X., Sun N., Jin L. M., Wang S., Zhang B., Ma C., Sun L. P.. The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3[J]. Desalination, 2011,281(1):179-184.  

    29. [29]

      Li C. F., Yin Y. D., Hou H. G., Fan N. Y., Yuan F. L., Shi Y. M., Meng Q. L.. Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation[J]. Solid State Commun., 2010,150(13):585-589.  

    30. [30]

      Al-Hazmi F., Alnowaiser F., Al-Ghamdi A. A., Aly M. M., Al-Tuwirqi R. M., El-Tantawy F.. A new large-scale synthesis of magnesium oxide nanowires:structural and antibacterial properties[J]. Superlattice Microst., 2012,52(2):200-209. doi: 10.1016/j.spmi.2012.04.013

    31. [31]

      He J., Zhao X. N., Zhu J. J., Wang J.. Preparation of CdS nanowires by the decomposition of the complex in the presence of microwave irradiation[J]. J. Cryst. Growth, 2002,240(3):389-394.  

    32. [32]

      Benjamin J., Wylie-van E., Aidan G. Y., Najeh I. A., Tim K., Nick M. S.. Ligand-functionalised copper(Ⅱ) hydroxide for quantum dot photoluminescence quenching[J]. J. Colloid Interfaces Sci., 2010,346(2)288. doi: 10.1016/j.jcis.2010.03.010

    33. [33]

      Liu N., Wu D., Wu H. X., Luo F., Chen J.. Controllable synthesis of metal hydroxide and oxide nanostructures by ionic liquids assisted electrochemical corrosion method[J]. Solid State Sci., 2008,10(8):1049-1055. doi: 10.1016/j.solidstatesciences.2007.11.017

    34. [34]

      Sun Y. Z., Ma L., Zhou B. B., Gao P.. Cu(OH)2 and CuO nanotube networks from hexaoxacyclooctadecane-like posnjakite microplates:Synthesis and electrochemical hydrogen storage[J]. Int. J. Hydrogen Energ., 2012,37(3):2336-2343. doi: 10.1016/j.ijhydene.2011.10.090

    35. [35]

      Lee S., Park S., Jeong H., Kim C. W., Lee D. J., Jin C.. Effects of post-annealing treatment on the microstructural evolution and quality of Cu(OH)2 nanowires[J]. J. Alloy Compd., 2015,652(4):153-157.  

    36. [36]

      Yu L. Y., Xu Z. L., Shen H. M., Yang H.. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method[J]. J. Membr. Sci., 2009,337(1):257-265.  

    37. [37]

      Vatanpour V., Yekavalangi M. E., Safarpour M.. Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance[J]. Sep. Purif. Technol., 2016,163:300-309. doi: 10.1016/j.seppur.2016.03.011

    38. [38]

      Yan L., Li Y. S., Xiang C. B., Xianda S.. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance[J]. J. Membr. Sci., 2006,276(1):162-167.  

    39. [39]

      Zhao S., Yan W. T., Shi M. Q., Wang Z., Wang J. X., Wang S. C.. Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone[J]. J. Membr. Sci., 2015,478:105-116. doi: 10.1016/j.memsci.2014.12.050

  • 加载中
    1. [1]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    2. [2]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    3. [3]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    4. [4]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    5. [5]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    6. [6]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    7. [7]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    8. [8]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    9. [9]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    10. [10]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    13. [13]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    14. [14]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    15. [15]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    16. [16]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    17. [17]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    18. [18]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    19. [19]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    20. [20]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

Metrics
  • PDF Downloads(0)
  • Abstract views(872)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return